From 8448c4badae86badcd4a9bdbbfe6d1efabb98f31 Mon Sep 17 00:00:00 2001 From: anand43 Date: Fri, 1 Mar 2024 11:20:41 -0500 Subject: [PATCH] Testing math and rearranging --- docs/user-guide/gravitational-harmonics/index.rst | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/user-guide/gravitational-harmonics/index.rst b/docs/user-guide/gravitational-harmonics/index.rst index 790339207..754707750 100644 --- a/docs/user-guide/gravitational-harmonics/index.rst +++ b/docs/user-guide/gravitational-harmonics/index.rst @@ -7,18 +7,18 @@ in ``swiftest/examples``. Swiftest uses `SHTOOLS `__. -..math:: +.. math:: U(r) = \frac{GM}{r} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left( \frac{R_0}{r} \right)^l C_{lm} Y_{lm} (\theta, \phi) \label{grav_pot} -* Gravitational potential:math:`U` at a point:math:`\Vec{r}`;:math:`\theta` is the polar angle;:math:`\phi` is the azimuthal angle;:math:`R_0` is the central body -radius;:math:`G` is the gravitational constant;:math:`Y_{lm}` is the spherical harmonic function at degree:math:`l` and order:math:`m`;:math:`C_{lm}` is the corresponding coefficient. +Gravitational potential :math:`U` at a point :math:`\Vec{r}`; :math:`\theta` is the polar angle; :math:`\phi` is the azimuthal angle; +:math:`R_0` is the central body radius; :math:`G` is the gravitational constant; :math:`Y_{lm}` is the spherical harmonic function at degree :math:`l` and order :math:`m`; :math:`C_{lm}` is the corresponding coefficient. Gravitational Harmonics coefficients ===================================== -Swiftest adopts the :math:`4\pi` or geodesy normalization for the gravitational harmonics coefficients. +Swiftest adopts the :math:`4\pi` or geodesy normalization for the gravitational harmonics coefficients. The coefficients can be computed in a number of ways: - Using the axes measurements of the body ( :func:`clm_from_ellipsoid `)