diff --git a/src/swiftest/swiftest_sph.f90 b/src/swiftest/swiftest_sph.f90 index 81f474388..cf2916260 100644 --- a/src/swiftest/swiftest_sph.f90 +++ b/src/swiftest/swiftest_sph.f90 @@ -41,6 +41,7 @@ module subroutine swiftest_sph_g_acc_one(GMcb, r_0, phi, theta, rh, c_lm, g_sph, real(DP) :: r_mag !! magnitude of rh real(DP) :: plm, dplm !! Associated Legendre polynomials at a given l, m real(DP) :: ccss, cssc !! See definition in source code + real(DP) :: cos_theta, sin_theta !! cos(theta) and sin(theta) real(DP), dimension(:), allocatable :: p, p_deriv !! Associated Lengendre Polynomials at a given cos(theta) real(DP) :: r2, irh, rinv2, t0, t1, t2, t3, fac0, fac1, fac2, fac3, fac4, j2rp2, j4rp4, r_fac, cos_tmp, sin_tmp, sin2_tmp, plm1, sin_phi, cos_phi @@ -64,12 +65,19 @@ module subroutine swiftest_sph_g_acc_one(GMcb, r_0, phi, theta, rh, c_lm, g_sph, fac2 = 2 * t0 * (t1 - (2.0_DP - (14.0_DP * t2 / 3.0_DP)) * t3) fac0 = 4 * PI - if(cos(theta) > epsilon(0.0_DP)) then - ! call PlmBar_d1(p, p_deriv, l_max, cos(theta)) ! Associated Legendre Polynomials and the 1st Derivative - call PlmBar(p, l_max, cos(theta)) - else - call PlmBar(p, l_max, 0.0_DP) - end if + cos_theta = cos(theta) + sin_theta = sin(theta) + + + + if(abs(cos_theta) < epsilon(0.0_DP)) then + cos_theta = 0.0_DP + if(abs(sin_theta) < epsilon(0.0_DP)) then + sin_theta = 0.0_DP + + ! call PlmBar_d1(p, p_deriv, l_max, cos_theta) ! Associated Legendre Polynomials and the 1st Derivative + call PlmBar(p, l_max, cos_theta) + do l = 1, l_max ! skipping the l = 0 term; It is the spherical body term do m = 0, l @@ -87,17 +95,17 @@ module subroutine swiftest_sph_g_acc_one(GMcb, r_0, phi, theta, rh, c_lm, g_sph, ! cssc * m = first derivative of ccss with respect to phi ! m > 0 - ! g_sph(1) = g_sph(1) - GMcb * r_0**l / r_mag**(l + 2) * (cssc * m * plm * sin(phi) / sin(theta) & - ! + ccss * sin(theta) * cos(phi) & - ! * (dplm * cos(theta) + plm * (l + 1))) ! g_x - ! g_sph(2) = g_sph(2) - GMcb * r_0**l / r_mag**(l + 2) * (-1 * cssc * m * plm * cos(phi) / sin(theta) & - ! + ccss * sin(theta) * sin(phi) & - ! * (dplm * cos(theta) + plm * (l + 1))) ! g_y - ! g_sph(3) = g_sph(3) - GMcb * r_0**l / r_mag**(l + 2) * ccss * (-1 * dplm * sin(theta)**2 & - ! + plm * (l + 1) * cos(theta)) ! g_z - - cos_tmp = cos(theta) - sin_tmp = sin(theta) + ! g_sph(1) = g_sph(1) - GMcb * r_0**l / r_mag**(l + 2) * (cssc * m * plm * sin(phi) / sin_theta & + ! + ccss * sin_theta * cos(phi) & + ! * (dplm * cos_theta + plm * (l + 1))) ! g_x + ! g_sph(2) = g_sph(2) - GMcb * r_0**l / r_mag**(l + 2) * (-1 * cssc * m * plm * cos(phi) / sin_theta & + ! + ccss * sin_theta * sin(phi) & + ! * (dplm * cos_theta + plm * (l + 1))) ! g_y + ! g_sph(3) = g_sph(3) - GMcb * r_0**l / r_mag**(l + 2) * ccss * (-1 * dplm * sin_theta**2 & + ! + plm * (l + 1) * cos_theta) ! g_z + + cos_tmp = cos_theta + sin_tmp = sin_theta sin2_tmp = sin(2 * theta) sin_phi = sin(phi) cos_phi = cos(phi) @@ -119,31 +127,31 @@ module subroutine swiftest_sph_g_acc_one(GMcb, r_0, phi, theta, rh, c_lm, g_sph, ! !! Alternative form of dplm - ! g_sph(1) = g_sph(1) - GMcb * r_0**l / r_mag**(l + 2) * (cssc * m / sin(theta) * plm * sin(phi) & - ! + ccss * cos(phi) * (plm * ((l + m + 1) * sin(theta) - m / sin(theta)) & - ! + plm1 * cos(theta))) - ! g_sph(2) = g_sph(2) - GMcb * r_0**l / r_mag**(l + 2) * (-cssc * m / sin(theta) * plm * cos(phi) & - ! + ccss * sin(phi) * (plm * ((l + m + 1) * sin(theta) - m / sin(theta)) & - ! + plm1 * cos(theta))) - ! g_sph(3) = g_sph(3) - GMcb * r_0**l / r_mag**(l + 2) * ccss * (plm * (l + m +1) * cos(theta) - plm1 * sin(theta)) + ! g_sph(1) = g_sph(1) - GMcb * r_0**l / r_mag**(l + 2) * (cssc * m / sin_theta * plm * sin(phi) & + ! + ccss * cos(phi) * (plm * ((l + m + 1) * sin_theta - m / sin_theta) & + ! + plm1 * cos_theta)) + ! g_sph(2) = g_sph(2) - GMcb * r_0**l / r_mag**(l + 2) * (-cssc * m / sin_theta * plm * cos(phi) & + ! + ccss * sin(phi) * (plm * ((l + m + 1) * sin_theta - m / sin_theta) & + ! + plm1 * cos_theta)) + ! g_sph(3) = g_sph(3) - GMcb * r_0**l / r_mag**(l + 2) * ccss * (plm * (l + m +1) * cos_theta - plm1 * sin_theta) ! Condensed form ! fac0 = -(m * cos_tmp * plm / sin_tmp - plm1) / sin_tmp ! dplm - fac1 = m / sin(theta) * plm - fac2 = plm * (l + m + 1) * sin(theta) + plm1 * cos(theta) + fac1 = m * plm / sin_theta + fac2 = plm * (l + m + 1) * sin_theta + plm1 * cos_theta fac3 = fac2 - fac1 - ! fac3 = plm * (l + m + 1) * cos(theta) - ! fac4 = plm1 * sin(theta) + ! fac3 = plm * (l + m + 1) * cos_theta + ! fac4 = plm1 * sin_theta r_fac = -GMcb * r_0**l / r_mag**(l + 2) ! g_sph(:) = 0.0_DP g_sph(1) = g_sph(1) + r_fac * (cssc * fac1 * sin(phi) + ccss * (fac2 - fac1) * cos(phi)) g_sph(2) = g_sph(2) + r_fac * (-cssc * fac1 * cos(phi) + ccss * (fac2 - fac1) * sin(phi)) - g_sph(3) = g_sph(3) + r_fac * ccss * (plm * (l + m + 1) * cos(theta) - plm1 * sin(theta)) + g_sph(3) = g_sph(3) + r_fac * ccss * (plm * (l + m + 1) * cos_theta - plm1 * sin_theta) fac0 = (.mag. g_sph(:)) - ! fac3 = 3 * c_lm(m+1, l+1, 1) / 2 * r_0**2 / r_mag**4 * (3*(cos(theta))**2 - 1) * GMcb ! g_sph for J2 + ! fac3 = 3 * c_lm(m+1, l+1, 1) / 2 * r_0**2 / r_mag**4 * (3*(cos_theta)**2 - 1) * GMcb ! g_sph for J2 end do end do