From 55161f782c59f002557793a49cfa64cecc0240e3 Mon Sep 17 00:00:00 2001 From: JAX Toolbox Date: Sun, 20 Apr 2025 00:13:45 +0000 Subject: [PATCH] missing import --- pipe/etl.py | 163 ++++++++++++++++++++++++++-------------------------- 1 file changed, 83 insertions(+), 80 deletions(-) diff --git a/pipe/etl.py b/pipe/etl.py index a6be6c1..433e78e 100644 --- a/pipe/etl.py +++ b/pipe/etl.py @@ -1,80 +1,83 @@ -# -*- coding: utf-8 -*- -""" -etl.py - -This module contains the ETL (Extract, Transform, Load) pipeline for processing -the spectrogram data and the labels. -""" - -from pyspark.sql import SparkSession, functions, types, Row -import tensorflow as tf -import keras -import matplotlib.pyplot as plt -from sklearn.metrics import confusion_matrix -from sklearn.preprocessing import OneHotEncoder - -def transform(spark, dataframe, keys): - dataframe = dataframe.withColumn( - "index", functions.monotonically_increasing_id() - ) - bundle = {key: [ - arr.tolist() - for arr in OneHotEncoder(sparse_output=False) \ - .fit_transform(dataframe.select(key).collect()) - ] for key in keys - } - - bundle = [dict(zip(bundle.keys(), values)) - for values in zip(*bundle.values())] - schema = types.StructType([ - types.StructField(key, types.ArrayType(types.FloatType()), True) - for key in keys - ]) - newframe = spark.createDataFrame(bundle, schema=schema).withColumn( - "index", functions.monotonically_increasing_id() - ) - for key in keys: - dataframe = dataframe.withColumnRenamed(key, f"{key}_str") - dataframe = dataframe.join(newframe, on="index", how="inner") - - return dataframe - -def build_dict(df, key): - df = df.select(key, f"{key}_str").distinct() - - return df.rdd.map( - lambda row: (str(np.argmax(row[key])), row[f"{key}_str"]) - ).collectAsMap() - -def extract(spark): - path = Path("/app/workdir") - labels = [] - with open(path / "train.csv", "r") as file: - for line in file: - labels.append(line.strip().split(",")[0]) - - pipe = SpectrogramPipe(spark, filetype="matfiles") - - return pipe.spectrogram_pipe(path, labels) - -def load(spark, split=[0.99, 0.005, 0.005]): - data = extract(spark) - data.select("treatment").replace("virus", "cpv") \ - .replace("cont", "pbs") \ - .replace("control", "pbs") \ - .replace("dld", "pbs").distinct() - - data = transform(spark, data, ["treatment", "target"]) - category_dict = { - key: build_dict(data, key) for key in ["treatment", "target"] - } - splits = data.randomSplit(split, seed=42) - trainx, valx, testx = (trim(dset, "spectrogram") for dset in splits) - trainy, valy, testy = ( - [ - np.array(dset.select("treatment").collect()).squeeze(), - np.array(dset.select("target").collect()).squeeze() - ] for dset in splits - ) - - return ((trainx, trainy), (valx, valy), (testx, testy), category_dict) +# -*- coding: utf-8 -*- +""" +etl.py + +This module contains the ETL (Extract, Transform, Load) pipeline for processing +the spectrogram data and the labels. +""" + +import keras +import matplotlib.pyplot as plt +from pathlib import Path +from pyspark.sql import SparkSession, functions, types, Row +from sklearn.metrics import confusion_matrix +from sklearn.preprocessing import OneHotEncoder +import tensorflow as tf + +from pipe.pipe import SpectrogramPipe + +def transform(spark, dataframe, keys): + dataframe = dataframe.withColumn( + "index", functions.monotonically_increasing_id() + ) + bundle = {key: [ + arr.tolist() + for arr in OneHotEncoder(sparse_output=False) \ + .fit_transform(dataframe.select(key).collect()) + ] for key in keys + } + + bundle = [dict(zip(bundle.keys(), values)) + for values in zip(*bundle.values())] + schema = types.StructType([ + types.StructField(key, types.ArrayType(types.FloatType()), True) + for key in keys + ]) + newframe = spark.createDataFrame(bundle, schema=schema).withColumn( + "index", functions.monotonically_increasing_id() + ) + for key in keys: + dataframe = dataframe.withColumnRenamed(key, f"{key}_str") + dataframe = dataframe.join(newframe, on="index", how="inner") + + return dataframe + +def build_dict(df, key): + df = df.select(key, f"{key}_str").distinct() + + return df.rdd.map( + lambda row: (str(np.argmax(row[key])), row[f"{key}_str"]) + ).collectAsMap() + +def extract(spark): + path = Path("/app/workdir") + labels = [] + with open(path / "train.csv", "r") as file: + for line in file: + labels.append(line.strip().split(",")[0]) + + pipe = SpectrogramPipe(spark, filetype="matfiles") + + return pipe.spectrogram_pipe(path, labels) + +def load(spark, split=[0.99, 0.005, 0.005]): + data = extract(spark) + data.select("treatment").replace("virus", "cpv") \ + .replace("cont", "pbs") \ + .replace("control", "pbs") \ + .replace("dld", "pbs").distinct() + + data = transform(spark, data, ["treatment", "target"]) + category_dict = { + key: build_dict(data, key) for key in ["treatment", "target"] + } + splits = data.randomSplit(split, seed=42) + trainx, valx, testx = (trim(dset, "spectrogram") for dset in splits) + trainy, valy, testy = ( + [ + np.array(dset.select("treatment").collect()).squeeze(), + np.array(dset.select("target").collect()).squeeze() + ] for dset in splits + ) + + return ((trainx, trainy), (valx, valy), (testx, testy), category_dict)