diff --git a/.gitignore b/.gitignore index cdb2b1f..bdc7a9e 100644 --- a/.gitignore +++ b/.gitignore @@ -1,6 +1,9 @@ # Data files *.csv +# Output figures +*.png + # History files .Rhistory .Rapp.history diff --git a/calculate_repeatability.r b/calculate_repeatability.r index 41a57cc..0009a51 100644 --- a/calculate_repeatability.r +++ b/calculate_repeatability.r @@ -1,5 +1,11 @@ # calculate_repeatability.r +# +# value ~ 1|EXP.ID + VARIETY + TREATMENT + GROWTH_STAGE +# value ~ 1|EXP.ID + VARIETY + TREATMENT Seth's model +# value ~ 1|EXP.ID + VARIETY Current model + +library(dplyr) library(lme4) library(heritability) @@ -8,8 +14,12 @@ library(heritability) # Input long format data path.rgb.long <- ("./df_rgb_long.csv") path.hsi.long <- ("./df_hsi_long.csv") -path.rpt <- ("./rpt.csv") +path.rpt <- ("./rpt_no_public.csv") +# Define varieties that is excluded for repeatability measurement +exclude.variety <-c("P1", "P2", "P3", "P4") + +# List of "factor (categorical)" variables factor.col <- c('EXP.ID', 'POT_BARCODE', 'TREATMENT', @@ -18,12 +28,17 @@ factor.col <- c('EXP.ID', 'View', 'frame_nr') - # Load RGB and HSI data in long format message("Loading data...") df.rgb <- read.csv(path.rgb.long) df.hsi <- read.csv(path.hsi.long) +# Exclude varieties, as needed +if (length(exclude.variety)>0){ + df.rgb <- df.rgb %>% filter(!VARIETY %in% exclude.variety) + df.hsi <- df.hsi %>% filter(!VARIETY %in% exclude.variety) +} + # Combine RGB and HSI data df <- rbind(df.rgb, df.hsi) @@ -56,7 +71,7 @@ for(i in 1:nrow(df.rpt)){ row$View, row$frame_nr, row$variable, - " (", i, "/", nrow(df.rpt), ")" sep=" ")) + " (", i, "/", nrow(df.rpt), ")", sep=" ")) df.temp <- df[which(df$TREATMENT==row$TREATMENT & df$GROWTH_STAGE==row$GROWTH_STAGE & df$View==row$View & @@ -89,14 +104,4 @@ write.csv(df.rpt, path.rpt, row.names=F) - -# factor(EXP.ID, frame_nr, VARIETY, TREATMENT) -# value ~ 1|EXP.ID + VARIETY + TREATMENT + GROWTH_STAGE -# value ~ 1|EXP.ID + VARIETY + TREATMENT Seth -# value ~ 1|EXP.ID + VARIETY Current - - - - - # EOF