Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
import numpy as np
import itertools
import scipy.optimize as optimize
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from decimal import *
getcontext().prec = 256
plt.close('all')
def poly_matrix(x, y, order):
""" generate Matrix use with lstsq """
ncols = (order + 1)**2
G = np.zeros((x.size, ncols))
ij = itertools.product(range(order+1), range(order+1))
for k, (i, j) in enumerate(ij):
G[:, k] = x**i * y**j
return G
def expfunc(inputs, a, b, c):
x, y = np.log(inputs[0][:]), np.log(inputs[1][:])
# x, y = (inputs[0][:]), (inputs[1][:])
return a*np.exp(b*x)*np.exp(c*y)
def linfitter(x,y,z, ordr):
# make Matrix:
G = poly_matrix(x, y, ordr)
# Solve for np.dot(G, m) = z:
m = np.linalg.lstsq(G,z,rcond=None)[0]
out = np.reshape(np.dot(G,m),x.shape)
return G, m, out
def linpred(xx, yy, G, m, ordr):
GG = poly_matrix(xx.ravel(), yy.ravel(), ordr)
return np.reshape(np.dot(GG, m), xx.shape)
def newfunc(inputs, a, b, c):
x, y = (inputs[0][:]), (inputs[1][:])
return a*x**b*y**c
###############################################################################
#
###############################################################################
#
#xdat = np.array([18,18, 130.077,130.77,130.077,130.77, 191.976,191.976,191.976,
# 230.093,230.093,230.093, 304.212, #434.5,434.5,
# 543.525, 558.64,558.64,558.64,558.64, 747.953,747.953,747.953,
# 786.98, 822.94,822.94, 912.085,
# 1435.6 #,42700
# ])
#ydat = np.array([15,52,24,38,72,104,10,18,54, 34,48,96, 90, #18,54,
# 10, 8,32,37,45,12,46,120,#17,54,190,
# 17,5,10,17, 40 # ,22
# ])
#zdat = np.array([8.8e-10,4.33e-10, 5e-16,3e-16,3.5e-16,2.25e-16, 5e-17,
# 3.8e-17,7e-18, 1.1e-17,7e-18,2.5e-18, 5e-18, # 1e-17,3e-18,
# 3e-18, 5e-19,7.5e-20,1e-20,2.5e-21, 5e-20,1.5e-20,5e-20, 1e-20,
# 4.76e-19,4.44e-19, 5e-21,1e-21 # ,1.64e-21
# ])
xdat = np.array([130.77,#467,
787,434.5,434.5,
225.21,1435.63,#302.236,
747.953,747.953,
747.953,359.35,
558.64,558.64,558.64,
558.64,130,130,304,543,
230,230,230,18,
18])
ydat = np.array([104,#12,
12,18,54,
30,40,#60,
12,46,
120,120,
8,32,37,
45,72,24,105,10,
34,48,96,15,
52])
zdat = np.array([95e-18,#1e-21,
0.75e-20,1.75e-17,4e-18,
1e-19,1e-21,#3e-21,
2e-20,10e-21,
1.5e-21,5e-21,
2e-19,0.45e-19,0.1e-19,
2.5e-21,4.5e-16,0.5e-16,3e-18,6e-20,
0.6e-17,0.5e-17,0.8e-17,8.8e-10,
4.33e-10])
zdat_log=np.log(zdat)
#zdat_log=np.log10(zdat)
###############################################################################
#
###############################################################################
A = np.asarray([list(a) for a in zip(xdat,ydat,zdat_log)])
xi = np.linspace(min(xdat)*0.25,max(xdat)*1.25,len(xdat))
yi = np.linspace(min(ydat)*0.25,max(ydat)*1.1,len(ydat))
xx, yy = np.meshgrid(xi, yi)
#------------------------------------------------------------------------------
zs = []
rsqs = []
for idx, ordr in enumerate([1,2,3,4,5]):
G, m, out = linfitter(xdat,ydat,zdat_log,ordr)
zs.append(linpred(xx,yy,G,m,ordr))
rsqs.append(r2_score(zdat_log, out))
print('R\u00b2 (linear, order={0}): {1:1.4f}'.format(ordr, rsqs[idx]))
print('Linear Params (order={0}): '.format(ordr), m)
expp, pcov = optimize.curve_fit(expfunc, (xdat, ydat), zdat_log,ftol=1e-15, xtol=1e-15, maxfev=10000)
zexp = expfunc((xdat,ydat), *expp)
rsq = r2_score(zdat_log, zexp)
zz_exp = expfunc((xx,yy),*expp)
print('\na*exp(b*log(x))*exp(c*log(y))')
print('R\u00b2 (exponential): {0:1.4f}'.format(rsq))
print('Exponential Params: A={0}, B={1}, C={2}'.format(*expp))
print('\nz = exp( a(x^b)*(y^c) )')
newp, pcov_new = optimize.curve_fit(newfunc, (xdat, ydat), zdat, ftol=1e-15, xtol=1e-15, maxfev=800000)
znew = newfunc((xdat,ydat), *newp)
rsq_new = r2_score(zdat, znew)
print('R\u00b2 (new): {0:1.4f}'.format(rsq_new))
znew_list = np.asarray([list(a) for a in zip(zdat, znew)])
rsq_new_log = r2_score(np.log(zdat), np.log(znew))
print('R\u00b2 (new): {0:1.4f}'.format(rsq_new_log))
print('\nz = exp( a(x^b)*(y^c) )')
print('New Params: a={0}, b={1}, c={2}'.format(*newp))
zz = newfunc((xx,yy),*newp)
#------------------------------------------------------------------------------
#
#cmap = cm.RdBu
#
#fig, axes = plt.subplots(nrows=1, ncols=6,subplot_kw={'projection': '3d'})
#for idx, ax in enumerate(axes.flat):
# if idx < len(zs):
#
# im = ax.plot_surface(xx, yy, zs[idx], color=cmap(rsqs[idx]), alpha=0.2, vmin=0, vmax=1)
# ax.set_title('R\u00b2 (lin, order={0}):{1:8.4f}'.format(idx+1, rsqs[idx]))
# else:
# im = ax.plot_surface(xx,yy,zz,color=cmap(rsq), alpha=.2, vmin=0, vmax=1)
# ax.set_title('R\u00b2 (exp):{1:8.4f}'.format(ordr, rsq))
#
# ax.set_zlim(-20, 0)
# ax.scatter(xdat, ydat, zdat_log, c='k')
# ax.set_zlim(-20, 0)
#
#
#m = cm.ScalarMappable(cmap=cm.RdBu)
#m.set_array(np.linspace(0,1,1000))
#plt.colorbar(m,alpha=1)
#
#
#fig.tight_layout()
#plt.show()
m = cm.ScalarMappable(cmap=cm.Blues)
m.set_array(np.linspace(0,1,1000))
fig = plt.figure(1,figsize=(9,6))
ax = plt.axes(projection='3d')
ax.set_xlabel('Drug Mw (Da)',fontsize=14)
ax.set_ylabel('Polymer Mw (kDa)',fontsize=14)
ax.set_zlabel('Diffusivity ($log_{e}(m^2/s)$)',fontsize=14)
title = '$R^2={0:1.4f}$ $D=exp(ax^by^c)$\na={1:1.4f}, b={2:1.4f}, c={3:1.4f}'.format(rsq_new_log, newp[0], newp[1], newp[2])
ax.set_title(title,fontsize=20)
ax.plot_surface(xx,yy,np.log(zz),cmap='Blues', edgecolor='none',alpha=0.5)
ax.scatter(xdat,ydat,zdat_log,color='k',s=30 )
ax.view_init(elev=25,azim=75)
plt.colorbar(m,alpha=1)
fig.tight_layout()
fig = plt.figure(2,figsize=(9,6))
ax = plt.axes(projection='3d')
ax.set_xlabel('Drug Mw (Da)',fontsize=14)
ax.set_ylabel('Polymer Mw (kDa)',fontsize=14)
ax.set_zlabel('Diffusivity ($log_{e}(m^2/s)$)',fontsize=14)
title = '$R^2={0:1.4f}'.format(rsq)+'$ log(D)=$ae^{bMw_{Poly}}10^{cMw_{Drug}}$'+'\na={1:1.4f}, b={2:1.4f}, c={3:1.4f}'.format(rsq, expp[0], expp[1], expp[2])
ax.set_title(title,fontsize=20)
ax.plot_surface(xx, yy, zz_exp,cmap='Blues', edgecolor='none',alpha=0.5)
ax.scatter(xdat,ydat,zdat_log,color='k',s=30 )
plt.colorbar(m,alpha=1)
ax.view_init(elev=25,azim=75)
plt.show()
def Diff(Mw_drug,Mw_poly):
return np.exp(expp[0]* Mw_drug**expp[1] * Mw_poly**expp[2])
def Diff2(Mw_drug,Mw_poly):
return newp[0]*(Mw_drug**newp[1])*(Mw_poly**newp[2])
print('MW \t \t Guess \t \t Actual')
print('6.5 kDa \t %1.2E \t %1.2E' %(Diff(331,6.5),40e-18))
print('21 kDa \t \t %1.2E \t %1.2E' %(Diff(331,21),4e-18))
print('34 kDa \t \t %1.2E \t %1.2E' %(Diff(331,34),3e-18))
print('49 kDa \t \t %1.2E \t %1.2E' %(Diff(331,49),2.5e-18))
print('67 kDa \t \t %1.2E \t %1.2E' %(Diff(331,67),1.5e-18))
print('MW \t \t Guess \t \t Actual')
print('6.5 kDa \t %1.2E \t %1.2E' %(Diff2(331,6.5),40e-18))
print('21 kDa \t \t %1.2E \t %1.2E' %(Diff2(331,21),4e-18))
print('34 kDa \t \t %1.2E \t %1.2E' %(Diff2(331,34),3e-18))
print('49 kDa \t \t %1.2E \t %1.2E' %(Diff2(331,49),2.5e-18))
print('67 kDa \t \t %1.2E \t %1.2E' %(Diff2(331,67),1.5e-18))