Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Matlab-Programs-for-Nonlinear-Dynamics/quasiSpecAdj.m
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
297 lines (229 sloc)
5.71 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% Quasispecies and Replicator-Mutator simulation with adjacency matrix. | |
function node = quasiSpecAdj | |
%close all | |
h = colormap(lines); | |
randpop = 1; % 0) = spike population; 1) = random population | |
mutype = 2; % 0) = Hamming; 1) = rand; 2) = network distance | |
fitype = 5; % 0) = Hamming; 1) = 2-peak; 2) = rand+gauss; 3) = freq-dep; 4) = Network distance 5) = degree | |
B = 7; | |
N = 2^B; % size of mutation space (128) | |
lam = 1; % Hamming fitness only | |
gamma = 1; % freq-dep fitness (payoff matrix only) | |
relran = 0.025; % relative random contrib to fitness | |
time_expand = 50; | |
ep = 0.05; % average mutation rate: 0.1 to 0.01 typical (0.4835) (0.0290) | |
% Set up adjacency matrix | |
node = makeER(N,0.05); | |
%node = makeSW(N,3,0.2); | |
%node = makeSF(N,3); | |
%node = makeglobal(N); | |
[N,e,avgdegree,maxdegree,mindegree,numclus,meanclus,Lmax,L2,LmaxL2,meandistance,diam] = clusterstats(node); | |
deg = degreedist(node); | |
disp(' ') | |
displine('avg degree = ',avgdegree') | |
displine('number of clusters =', numclus) | |
displine('diameter = ',diam) | |
disp(' ') | |
figure(1) | |
drawnet(node) | |
%DrawNetC(node) | |
[A,degree,Lap] = adjacency(node); | |
dist = node2distance(node,100); | |
figure(2) | |
imagesc(dist) | |
colormap(jet) | |
colorbar | |
caxis([0 10]) | |
title('Distance Matrix') | |
%keyboard | |
%%%%% Set original population | |
if randpop == 1 | |
%rng(0); | |
x0temp = rand(1,N); % Initial population | |
sx = sum(x0temp); | |
x0 = x0temp/sx; | |
else | |
x0 = zeros(1,N); | |
x0(1) = 0.667; x0(2) = 0.333; | |
end | |
Pop0 = sum(x0); | |
%%%%%% Set Hamming distance | |
for yloop = 1:N | |
for xloop = 1:N | |
H(yloop,xloop) = hamming(yloop-1,xloop-1); | |
end | |
end | |
%%%%%%% Set Mutation matrix | |
if mutype == 0 % Hamming | |
Qtemp = 1./(1+H/ep); %Mutation matrix on Hamming | |
%Qtemp = exp(-H/(ep*50)); | |
Qsum = sum(Qtemp,2); | |
% Normalize mutation among species | |
for yloop = 1:N | |
for xloop = 1:N | |
Q(yloop,xloop) = Qtemp(yloop,xloop)/Qsum(xloop); | |
end | |
end | |
end | |
if mutype == 1 % Random mutation | |
%rng(0); | |
S = stochasticmatrix(N); | |
Stemp = S - diag(diag(S)); | |
Qtemp = ep*Stemp; | |
sm = sum(Qtemp,2)'; | |
Q = Qtemp + diag(ones(1,N) - sm); | |
end | |
if mutype == 2 % Network distance | |
Qtemp = 1./(1+dist/ep); %Mutation matrix on Hamming | |
Qsum = sum(Qtemp,2); | |
% Normalize mutation among species | |
for yloop = 1:N | |
for xloop = 1:N | |
Q(yloop,xloop) = Qtemp(yloop,xloop)/Qsum(xloop); | |
end | |
end | |
end | |
%keyboard | |
%%%%%%% Set fitness landscape | |
if fitype == 0 % Hamming | |
x = 1:N; | |
alpha = 84; | |
ftemp = exp(-lam*H(alpha,:)); % Fitness landscape | |
sf = sum(ftemp); | |
f = ftemp/sf; | |
end | |
if fitype == 1 % double peak and rand | |
%rng(1); | |
f = rand(1,N); | |
x = 1:N; | |
delg = 20; | |
sig1 = 1; | |
sig2 = 4; | |
g1 = gaussprob(x,(N/2 - delg),sig1); | |
g2 = 3*gaussprob(x,(N/2 + delg),sig2); | |
ftemp = relran*f + g1 + g2; | |
f = ftemp/sum(ftemp); | |
end | |
if fitype == 2 % rand + Gauss | |
%rng(0); | |
f = rand(1,N); | |
x = 1:N; | |
ftemp = relran*f + gauss((x-N/2)/2); % Fitness landscape | |
f = ftemp/sum(ftemp); | |
end | |
if fitype == 3 % frequency-dependent Hamming | |
avgdis = mean(mean(H)); | |
%payoff = exp(-gamma*(H - avgdis)); % payoff matrix | |
%payoff = H.^2; | |
%payoff = ones(size(H)); | |
payoff = exp(-gamma*H); | |
end | |
if fitype == 4 % Network Distance from node 64 | |
x = 1:N; | |
alpha = 64; | |
ftemp = exp(-lam*dist(alpha,:)); % Fitness landscape | |
sf = sum(ftemp); | |
f = ftemp/sf; | |
end | |
if fitype == 5 | |
ftemp = exp(-lam*deg); | |
sf = sum(ftemp); | |
f = ftemp/sf; | |
end | |
%keyboard | |
% Run time evolution | |
tspan = [0 1000]; | |
[t,x] = ode45(@quasispec,tspan,x0); | |
Pop0 | |
[sz,dum] = size(t); | |
Popend = sum(x(sz,:)) | |
phistar = sum(f.*x(sz,:)) % final average fitness | |
figure(3) | |
plot(f,'-') | |
hold on | |
figure(3) | |
plot(x(sz,:),'r') | |
hold off | |
legend('fitness','population') | |
figure(4) | |
loglog(f,x(sz,:),'or') | |
xlabel('Fitness') | |
ylabel('Population') | |
%keyboard | |
% figure(4) | |
% for loop = 1:N | |
% semilogx(t,x(:,loop),'Color',h(round(loop*64/N),:),'LineWidth',1.25) | |
% hold on | |
% end | |
% hold off | |
% set(gcf,'Color','white') | |
% xlabel('Time','FontSize',14) | |
% ylabel('Population','FontSize',14) | |
% hh = gca; | |
% set(hh,'FontSize',14) | |
% title('Semilogx') | |
% | |
% figure(5) | |
% for loop = 1:N | |
% plot(t,x(:,loop),'Color',h(round(loop*64/N),:)) | |
% hold on | |
% end | |
% hold off | |
% title('Linear') | |
% | |
% figure(6) | |
% for loop = 1:N | |
% loglog(t,x(:,loop),'Color',h(round(loop*64/N),:)) | |
% hold on | |
% end | |
% hold off | |
% title('Log-Log') | |
figure(7) | |
for loop = 1:N | |
semilogy(t,x(:,loop),'Color',h(round(loop*64/N),:)) | |
hold on | |
end | |
hold off | |
title('Semilogy') | |
% Eigenvalues | |
[V,D] = eig(W); | |
Lyap = max(D); | |
minD = min(Lyap) | |
mxD = max(D(:,1)) | |
mnD = mean(Lyap) | |
figure(8) | |
%semilogy(abs(V(:,1))) | |
plot((V(:,1))) | |
%histfixplot(Lyap,20,0,1.1*mxD); | |
figure(9) | |
plot(real(Lyap)) | |
title('Eigenvalue Spectrum') | |
%keyboard | |
disp(' ') | |
if fitype == 1 | |
xlo = N/2 - delg - 2*sig1; | |
xhi = N/2 - delg + 2*sig1; | |
fit44 = sum(f(xlo:xhi)) | |
pop44 = sum(x(sz,xlo:xhi))/Popend | |
xlo = N/2 + delg - 2*sig2; | |
xhi = N/2 + delg + 2*sig2; | |
fit84 = sum(f(xlo:xhi)) | |
pop84 = sum(x(sz,xlo:xhi))/Popend | |
end | |
function yd = quasispec(~,y) | |
if fitype == 3 % frequency-dependent Hamming | |
for loop = 1:N | |
ftemp(loop) = sum(payoff(:,loop).*y); | |
end | |
f = time_expand*ftemp/sum(ftemp); | |
end | |
% Transition matrix | |
for yloop = 1:N | |
for xloop = 1:N | |
W(yloop,xloop) = f(yloop)*Q(yloop,xloop); | |
end | |
end | |
phi = sum(f'.*y); % Average fitness of population | |
yd = W*y - phi*y; | |
end % end quasispec | |
end % end quasiSpec | |