Skip to content
Permalink
3ad1649002
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
164 lines (128 sloc) 3.68 KB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat March 21 2020
@author: nolte
D. D. Nolte, Introduction to Modern Dynamics: Chaos, Networks, Space and Time, 2nd ed. (Oxford,2019)
"""
import numpy as np
from scipy import integrate
from matplotlib import pyplot as plt
plt.close('all')
print(' ')
print('SIR.py')
def solve_flow(param,max_time=1000.0):
def flow_deriv(x_y_z_w,tspan):
In, Sn, Iq, Sq = x_y_z_w
Inp = -mu*In + beta*knn*In*Sn + beta*knq*Iq*Sn
Snp = -beta*knn*In*Sn - beta*knq*Iq*Sn
Iqp = -mu*Iq + beta*kqn*In*Sq + beta*kqq*Iq*Sq
Sqp = -beta*kqn*In*Sq - beta*kqq*Iq*Sq
return [Inp, Snp, Iqp, Sqp]
x0 = [In0, Sn0, Iq0, Sq0]
# Solve for the trajectories
t = np.linspace(tlo, thi, thi-tlo)
x_t = integrate.odeint(flow_deriv, x0, t)
return t, x_t
beta = 0.03 # infection rate
dill = 6 # mean days infectious
mu = 1/dill # decay rate
fnq = 0.2 # fraction not quarantining
fq = 1-fnq # fraction quarantining
P = 330 # Population of the US in millions
mr = 0.001 # Mortality rate
dq = 90 # Days of lock-down (this is the key parameter)
# During quarantine
knn = 50 # Average connections per day for non-compliant group among themselves
kqq = 0 # Connections among compliant group
knq = 0 # Effect of compliaht group on non-compliant
kqn = 5 # Effect of non-clmpliant group on compliant
initfrac = 0.0001 # Initial conditions:
In0 = initfrac*fnq # infected non-compliant
Sn0 = (1-initfrac)*fnq # susceptible non-compliant
Iq0 = initfrac*fq # infected compliant
Sq0 = (1-initfrac)*fq # susceptivle compliant
tlo = 0
thi = dq
param = (mu, beta, knn, knq, kqn, kqq) # flow parameters
t1, y1 = solve_flow(param)
In1 = y1[:,0]
Sn1 = y1[:,1]
Rn1 = fnq - In1 - Sn1
Iq1 = y1[:,2]
Sq1 = y1[:,3]
Rq1 = fq - Iq1 - Sq1
# Lift the quarantine
knn = 50
kqq = 5
knq = 20
kqn = 15
fin1 = len(t1)
In0 = In1[fin1-1]
Sn0 = Sn1[fin1-1]
Iq0 = Iq1[fin1-1]
Sq0 = Sq1[fin1-1]
tlo = fin1
thi = fin1 + 365-dq
param = (mu, beta, knn, knq, kqn, kqq)
t2, y2 = solve_flow(param)
In2 = y2[:,0]
Sn2 = y2[:,1]
Rn2 = fnq - In2 - Sn2
Iq2 = y2[:,2]
Sq2 = y2[:,3]
Rq2 = fq - Iq2 - Sq2
fin2 = len(t2)
t = np.zeros(shape=(fin1+fin2,))
In = np.zeros(shape=(fin1+fin2,))
Sn = np.zeros(shape=(fin1+fin2,))
Rn = np.zeros(shape=(fin1+fin2,))
Iq = np.zeros(shape=(fin1+fin2,))
Sq = np.zeros(shape=(fin1+fin2,))
Rq = np.zeros(shape=(fin1+fin2,))
t[0:fin1] = t1
In[0:fin1] = In1
Sn[0:fin1] = Sn1
Rn[0:fin1] = Rn1
Iq[0:fin1] = Iq1
Sq[0:fin1] = Sq1
Rq[0:fin1] = Rq1
t[fin1:fin1+fin2] = t2
In[fin1:fin1+fin2] = In2
Sn[fin1:fin1+fin2] = Sn2
Rn[fin1:fin1+fin2] = Rn2
Iq[fin1:fin1+fin2] = Iq2
Sq[fin1:fin1+fin2] = Sq2
Rq[fin1:fin1+fin2] = Rq2
plt.figure(1)
lines = plt.semilogy(t,In,t,Iq,t,(In+Iq))
plt.ylim([0.0001,.1])
plt.xlim([0,thi])
plt.legend(('Non-compliant','Compliant','Total'))
#plt.setp(lines, linewidth=0.5)
plt.xlabel('Days')
plt.ylabel('Infected (Millions)')
plt.title('Infection Dynamics for COVID-19 in US')
plt.show()
plt.figure(2)
lines = plt.semilogy(t,Rn*P*mr,t,Rq*P*mr)
plt.ylim([0.001,1])
plt.xlim([0,thi])
plt.legend(('Non-compliant','Compliant'))
plt.setp(lines, linewidth=0.5)
plt.xlabel('Days')
plt.ylabel('Deaths (Millions)')
plt.title('Total Deaths for COVID-19 in US')
plt.show()
D = P*mr*(Rn[fin1+fin2-1] + Rq[fin1+fin2-1])
print('Deaths = ',D)
plt.figure(3)
lines = plt.semilogy(t,In/fnq,t,Iq/fq)
plt.ylim([0.0001,.1])
plt.xlim([0,thi])
plt.legend(('Non-compliant','Compliant'))
plt.setp(lines, linewidth=0.5)
plt.xlabel('Days')
plt.ylabel('Fraction of Sub-Population')
plt.title('Population Dynamics for COVID-19 in US')
plt.show()