Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 17 15:53:42 2019
@author: nolte
Introduction to Modern Dynamics, 2nd edition (Oxford University Press, 2019)
Biased Double-Well Potential
"""
import numpy as np
from scipy import integrate
from scipy import signal
from matplotlib import pyplot as plt
plt.close('all')
T = 400
Amp = 3.5
def solve_flow(y0,c0,lim = [-3,3,-3,3]):
def flow_deriv(x_y, t, c0):
#"""Compute the time-derivative of a Medio system."""
x, y = x_y
#window = signal.triang(T)
return [y,-0.5*y - x**3 + 2*x + x*(2*np.pi/T)*Amp*np.cos(2*np.pi*t/T) + Amp*np.sin(2*np.pi*t/T)]
#return [y,-0.33*y - 2*x]
#return [y,-0.99*y - x**3 + 2*x + (2*np.pi/T)*24*signal.triang(t/T)]
# tt = np.zeros(shape=(tloopmax,))
# xtt = np.zeros(shape=(tloopmax,))
# cc = np.zeros(shape=(tloopmax,))
# for tloop in range(0,tloopmax):
#
#
# tlo = (tloop-1)*delt
# thi = tloop*delt
#
# if tloop < tloopmax/2:
# c = c0 + 3*np.abs(c0)*tloop/(tloopmax/2)
# else:
# c = c0 + 3*np.abs(c0) - 3*np.abs(c0)*(tloop-tloopmax/2)/(tloopmax/2)
#
#
#
## Solve for the trajectories
# t = np.linspace(tlo, thi, 11)
# x_t = integrate.odeint(flow_deriv, y0, t, args=(c,))
#
# szt, dum = np.shape(x_t)
# tt[tloop], xtt[tloop] = x_t[szt-1]
# cc[tloop] = c
tsettle = np.linspace(0,T,101)
yinit = y0;
x_tsettle = integrate.odeint(flow_deriv,yinit,tsettle,args=(T,))
y0 = x_tsettle[100,:]
t = np.linspace(0, 1.5*T, 2001)
x_t = integrate.odeint(flow_deriv, y0, t, args=(T,))
c = Amp*np.sin(2*np.pi*t/T)
return t, x_t, c
eps = 0.0001
xc = np.zeros(shape=(100,))
X = np.zeros(shape=(100,))
Y = np.zeros(shape=(100,))
Z = np.zeros(shape=(100,))
for loop in range(0,100):
c = -1.2 + 2.4*loop/100 + eps
xc[loop]=c
coeff = [-1, 0, 2, c]
y = np.roots(coeff)
xtmp = np.real(y[0])
ytmp = np.real(y[1])
X[loop] = np.min([xtmp,ytmp])
Y[loop] = np.max([xtmp,ytmp])
Z[loop]= np.real(y[2])
plt.figure(1)
lines = plt.plot(xc,X,xc,Y,xc,Z)
plt.setp(lines, linewidth=0.5)
plt.show()
plt.title('Roots')
y0 = [1.9, 0]
c0 = -2.
t, x_t, c = solve_flow(y0,c0)
y1 = x_t[:,0]
y2 = x_t[:,1]
plt.figure(2)
lines = plt.plot(t,y1)
plt.setp(lines, linewidth=0.5)
plt.show()
plt.ylabel('X Position')
plt.xlabel('Time')
plt.figure(3)
lines = plt.plot(c,y1)
plt.setp(lines, linewidth=0.5)
plt.show()
plt.ylabel('X Position')
plt.xlabel('Control Parameter')
plt.title('Hysteresis Figure')