Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 21 06:03:32 2018
@author: David Nolte
Introduction to Modern Dynamics, 2nd edition (Oxford University Press, 2019)
Damped-driven pendulum
"""
import numpy as np
from scipy import integrate
from matplotlib import pyplot as plt
plt.close('all')
print('DampedDriven.py')
# model_case 1 = Pendulum
# model_case 2 = Double Well
print(' ')
print('DampedDriven.py')
print('Case: 1 = Pendulum 2 = Double Well')
model_case = int(input('Enter the Model Case (1-2)'))
if model_case == 1:
F = 0.6 # 0.6
delt = 0.25 # 0.1
w = 0.7 # 0.7
def flow_deriv(x_y_z,tspan):
x, y, z = x_y_z
a = y
b = F*np.cos(w*tspan) - np.sin(x) - delt*y
c = w
return[a,b,c]
else:
alpha = -1 # -1
beta = 1 # 1
delta = 0.3 # 0.3
gam = 0.15 # 0.15
w = 1
def flow_deriv(x_y_z,tspan):
x, y, z = x_y_z
a = y
b = delta*np.cos(w*tspan) - alpha*x - beta*x**3 - gam*y
c = w
return[a,b,c]
T = 2*np.pi/w
# initial conditions
px1 = .1
xp1 = .1
w1 = 0
x_y_z = [xp1, px1, w1]
# Settle-down Solve for the trajectories
t = np.linspace(0, 2000, 40000)
x_t = integrate.odeint(flow_deriv, x_y_z, t)
x0 = x_t[39999,0:3]
tspan = np.linspace(1,20000,400000)
x_t = integrate.odeint(flow_deriv, x0, tspan)
siztmp = np.shape(x_t)
siz = siztmp[0]
if model_case == 1:
y1 = np.mod(x_t[:,0]-np.pi,2*np.pi)-np.pi
y2 = x_t[:,1]
y3 = x_t[:,2]
else:
y1 = x_t[:,0]
y2 = x_t[:,1]
y3 = x_t[:,2]
plt.figure(1)
lines = plt.plot(y1,y2,'ko',ms=1)
plt.setp(lines, linewidth=0.5)
plt.show()
repnum = 5000
px = np.zeros(shape=(2*repnum,))
xvar = np.zeros(shape=(2*repnum,))
cnt = -1
testwt = np.mod(tspan,T)-0.5*T;
last = testwt[1]
for loop in range(2,siz):
if (last < 0)and(testwt[loop] > 0): # check for trajectory intersection with Poincare section
cnt = cnt+1
del1 = -testwt[loop-1]/(testwt[loop] - testwt[loop-1])
px[cnt] = (y2[loop]-y2[loop-1])*del1 + y2[loop-1]
xvar[cnt] = (y1[loop]-y1[loop-1])*del1 + y1[loop-1]
last = testwt[loop]
else:
last = testwt[loop]
plt.figure(2)
lines = plt.plot(xvar,px,'ko',ms=1)
plt.show()
if model_case == 1:
plt.savefig('DrivenPendulum')
else:
plt.savefig('DrivenDoubleWell')