Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Python-Programs-for-Nonlinear-Dynamics/Flow2D.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
153 lines (113 sloc)
3.73 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Created on Mon Apr 16 07:38:57 2018 | |
@author: David Nolte | |
Introduction to Modern Dynamics, 2nd edition (Oxford University Press, 2019) | |
2D Flow examples: Medio, van der Pol, Fitzhugh-Nagumo | |
""" | |
import numpy as np | |
from scipy import integrate | |
from matplotlib import pyplot as plt | |
plt.close('all') | |
# model_case 1 = Medio | |
# model_case 2 = vdP | |
# model_case 3 = Fitzhugh-Nagumo | |
model_case = int(input('Input Model Case (1-3)')) | |
def solve_flow(param,lim = [-3,3,-3,3],max_time=10.0): | |
if model_case == 1: | |
# Medio 2D flow | |
def flow_deriv(x_y, t0, a,b,c,alpha): | |
#"""Compute the time-derivative of a Medio system.""" | |
x, y = x_y | |
return [a*y + b*x*(c - y**2),-x+alpha] | |
model_title = 'Medio Economics' | |
elif model_case == 2: | |
# van der pol 2D flow | |
def flow_deriv(x_y, t0, alpha,beta): | |
#"""Compute the time-derivative of a Medio system.""" | |
x, y = x_y | |
return [y,-alpha*x+beta*(1-x**2)*y] | |
model_title = 'van der Pol Oscillator' | |
else: | |
# Fitzhugh-Nagumo | |
def flow_deriv(x_y, t0, alpha, beta, gamma): | |
#"""Compute the time-derivative of a Medio system.""" | |
x, y = x_y | |
return [y-alpha,-gamma*x+beta*(1-y**2)*y] | |
model_title = 'Fitzhugh-Nagumo Neuron' | |
plt.figure() | |
xmin = lim[0] | |
xmax = lim[1] | |
ymin = lim[2] | |
ymax = lim[3] | |
plt.axis([xmin, xmax, ymin, ymax]) | |
N=144 | |
colors = plt.cm.prism(np.linspace(0, 1, N)) | |
x0 = np.zeros(shape=(N,2)) | |
ind = -1 | |
for i in range(0,12): | |
for j in range(0,12): | |
ind = ind + 1; | |
x0[ind,0] = ymin-1 + (ymax-ymin+2)*i/11 | |
x0[ind,1] = xmin-1 + (xmax-xmin+2)*j/11 | |
# Solve for the trajectories | |
t = np.linspace(0, max_time, int(250*max_time)) | |
x_t = np.asarray([integrate.odeint(flow_deriv, x0i, t, param) | |
for x0i in x0]) | |
for i in range(N): | |
x, y = x_t[i,:,:].T | |
lines = plt.plot(x, y, '-', c=colors[i]) | |
plt.setp(lines, linewidth=1) | |
plt.show() | |
plt.title(model_title) | |
plt.savefig('Flow2D') | |
return t, x_t | |
def solve_flow2(param,max_time=20.0): | |
if model_case == 1: | |
# Medio 2D flow | |
def flow_deriv(x_y, t0, a,b,c,alpha): | |
#"""Compute the time-derivative of a Medio system.""" | |
x, y = x_y | |
return [a*y + b*x*(c - y**2),-x+alpha] | |
model_title = 'Medio Economics' | |
x0 = np.zeros(shape=(2,)) | |
x0[0] = 1 | |
x0[1] = 1 | |
elif model_case == 2: | |
# van der pol 2D flow | |
def flow_deriv(x_y, t0, alpha,beta): | |
#"""Compute the time-derivative of a Medio system.""" | |
x, y = x_y | |
return [y,-alpha*x+beta*(1-x**2)*y] | |
model_title = 'van der Pol Oscillator' | |
x0 = np.zeros(shape=(2,)) | |
x0[0] = 0 | |
x0[1] = 4.5 | |
else: | |
# Fitzhugh-Nagumo | |
def flow_deriv(x_y, t0, alpha, beta, gamma): | |
#"""Compute the time-derivative of a Medio system.""" | |
x, y = x_y | |
return [y-alpha,-gamma*x+beta*(1-y**2)*y] | |
model_title = 'Fitzhugh-Nagumo Neuron' | |
x0 = np.zeros(shape=(2,)) | |
x0[0] = 1 | |
x0[1] = 1 | |
# Solve for the trajectories | |
t = np.linspace(0, max_time, int(250*max_time)) | |
x_t = integrate.odeint(flow_deriv, x0, t, param) | |
return t, x_t | |
if model_case == 1: | |
param = (0.9,0.7,0.5,0.6) # Medio | |
lim = (-7,7,-5,5) | |
elif model_case == 2: | |
param = (5, 2.5) # van der Pol | |
lim = (-7,7,-10,10) | |
else: | |
param = (0.02,0.5,0.2) # Fitzhugh-Nagumo | |
lim = (-7,7,-4,4) | |
t, x_t = solve_flow(param,lim) | |
t, x_t = solve_flow2(param) | |
plt.figure(2) | |
lines = plt.plot(t,x_t[:,0],t,x_t[:,1],'-') | |