Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 16 07:38:57 2018
@author: David Nolte
Introduction to Modern Dynamics, 2nd edition (Oxford University Press, 2019)
3D Flow examples: Lorenz, Rossler, Chua
"""
import numpy as np
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from scipy import integrate
from matplotlib import pyplot as plt
plt.close('all')
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1], projection='3d')
ax.axis('on')
# model_case 1 = Lorenz
# model_case 2 = Rossler
# model_case 3 = Chua
model_case = int(input('Enter Model Case (1-3)'));
def solve_lorenz(param, max_time=8.0, angle=0.0):
if model_case == 1:
# Lorenz 3D flow
def flow_deriv(x_y_z, t0, sigma, beta, rho):
#"""Compute the time-derivative of a Lorenz system."""
x, y, z = x_y_z
return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]
model_title = 'Lorenz Attractor'
elif model_case == 2:
# Rossler 3D flow
def flow_deriv(x_y_z, t0, sigma, beta, rho):
#"""Compute the time-derivative of a Medio system."""
x, y, z = x_y_z
return [-y-z, x + sigma*y, beta + z*(x - rho)]
model_title = 'Rossler Attractor'
else:
# Chua 3D flow
def flow_deriv(x_y_z, t0, alpha, beta, c, d):
#"""Compute the time-derivative of a Medio system."""
x, y, z = x_y_z
f = c*x + 0.5*(d-c)*(abs(x+1)-abs(x-1))
return [alpha*(y-x-f), x-y+z, -beta*y]
model_title = 'Chua Attractor'
N=12
colors = plt.cm.prism(np.linspace(0, 1, N))
# Choose random starting points, uniformly distributed from -15 to 15
np.random.seed(1)
x0 = init1 + init2*np.random.random((N, 3))
# Settle-down Solve for the trajectories
t = np.linspace(0, max_time/4, int(250*max_time/4))
x_t = np.asarray([integrate.odeint(flow_deriv, x0i, t, param)
for x0i in x0])
# Solve for trajectories
x0 = x_t[0:N,int(250*max_time/4)-1,0:3]
t = np.linspace(0, max_time, int(250*max_time))
x_t = np.asarray([integrate.odeint(flow_deriv, x0i, t, param)
for x0i in x0])
# choose a different color for each trajectory
# colors = plt.cm.viridis(np.linspace(0, 1, N))
# colors = plt.cm.rainbow(np.linspace(0, 1, N))
# colors = plt.cm.spectral(np.linspace(0, 1, N))
colors = plt.cm.prism(np.linspace(0, 1, N))
for i in range(N):
x, y, z = x_t[i,:,:].T
lines = ax.plot(x, y, z, '-', c=colors[i])
plt.setp(lines, linewidth=0.5)
ax.view_init(30, angle)
plt.show()
plt.title(model_title)
plt.savefig('Flow3D')
return t, x_t
if model_case == 1:
param = (10, 8/3, 28) # Lorenz
ax.set_xlim((-25, 25))
ax.set_ylim((-35, 35))
ax.set_zlim((5, 55))
max_time = 50.0
init1 = -15
init2 = 30
elif model_case == 2:
param = (0.2, 0.2, 5.7) # Rossler
ax.set_xlim((-15, 15))
ax.set_ylim((-15, 15))
ax.set_zlim((0, 20))
max_time = 200
init1 = -15
init2 = 30
else:
param = (15.6, 28.0, -0.7, -1.14 ) # Chua
ax.set_xlim((-3, 3))
ax.set_ylim((-1, 1))
ax.set_zlim((-3, 3))
max_time = 100
init1 = 0
init2 = 0.1
t, x_t = solve_lorenz(param, max_time,angle=30)
plt.figure(2)
lines = plt.plot(t,x_t[1,:,0],t,x_t[1,:,1],t,x_t[1,:,2])
plt.setp(lines, linewidth=1)
for i in range(4):
plt.figure(3)
lines = plt.plot(x_t[i,:,0],x_t[i,:,1])
plt.setp(lines,linewidth=0.5)
plt.figure(4)
lines = plt.plot(x_t[i,:,1],x_t[i,:,2])
plt.setp(lines,linewidth=0.5)
plt.figure(5)
lines = plt.plot(x_t[i,:,0],x_t[i,:,2])
plt.setp(lines,linewidth=0.5)