Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Python-Programs-for-Nonlinear-Dynamics/Hill.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
87 lines (61 sloc)
1.93 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Created on Tue May 28 11:50:24 2019 | |
@author: nolte | |
Blog site: https://galileo-unbound.blog/2019/07/19/getting-armstrong-aldrin-and-collins-home-from-the-moon-apollo-11-and-the-three-body-problem/ | |
""" | |
import numpy as np | |
import matplotlib as mpl | |
from mpl_toolkits.mplot3d import Axes3D | |
from scipy import integrate | |
from matplotlib import pyplot as plt | |
from matplotlib import cm | |
import time | |
import os | |
plt.close('all') | |
womega = 1 | |
R = 1 | |
eps = 1e-6 | |
M1 = 1 | |
M2 = 1/10 | |
chsi = M2/M1 | |
x1 = -M2*R/(M1+M2) | |
x2 = x1 + R | |
def poten(y,c): | |
rp0 = np.sqrt(y**2 + c**2); | |
thetap0 = np.arctan(y/c); | |
rp1 = np.sqrt(x1**2 + rp0**2 - 2*np.abs(rp0*x1)*np.cos(np.pi-thetap0)); | |
rp2 = np.sqrt(x2**2 + rp0**2 - 2*np.abs(rp0*x2)*np.cos(thetap0)); | |
V = -M1/rp1 -M2/rp2 - E; | |
return [V] | |
def flow_deriv(x_y_z,tspan): | |
x, y, z, w = x_y_z | |
r1 = np.sqrt(x1**2 + x**2 - 2*np.abs(x*x1)*np.cos(np.pi-z)); | |
r2 = np.sqrt(x2**2 + x**2 - 2*np.abs(x*x2)*np.cos(z)); | |
yp = np.zeros(shape=(4,)) | |
yp[0] = y | |
yp[1] = -womega**2*R**3*(np.abs(x)-np.abs(x1)*np.cos(np.pi-z))/(r1**3+eps) - womega**2*R**3*chsi*(np.abs(x)-abs(x2)*np.cos(z))/(r2**3+eps) + x*(w-womega)**2 | |
yp[2] = w | |
yp[3] = 2*y*(womega-w)/x - womega**2*R**3*chsi*abs(x2)*np.sin(z)/(x*(r2**3+eps)) + womega**2*R**3*np.abs(x1)*np.sin(np.pi-z)/(x*(r1**3+eps)) | |
return yp | |
r0 = 0.64 | |
v0 = 0.3 | |
theta0 = 0 | |
vrfrac = 1 | |
rp1 = np.sqrt(x1**2 + r0**2 - 2*np.abs(r0*x1)*np.cos(np.pi-theta0)) | |
rp2 = np.sqrt(x2**2 + r0**2 - 2*np.abs(r0*x2)*np.cos(theta0)) | |
V = -M1/rp1 - M2/rp2 | |
T = 0.5*v0**2 | |
E = T + V | |
vr = vrfrac*v0 | |
W = (2*T - v0**2)/r0 | |
y0 = [r0, vr, theta0, W] | |
tspan = np.linspace(1,2000,20000) | |
y = integrate.odeint(flow_deriv, y0, tspan) | |
xx = y[1:20000,0]*np.cos(y[1:20000,2]); | |
yy = y[1:20000,0]*np.sin(y[1:20000,2]); | |
plt.figure(1) | |
lines = plt.plot(xx,yy) | |
plt.setp(lines, linewidth=0.5) | |
plt.show() |