Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Python-Programs-for-Nonlinear-Dynamics/NetDynamics.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
238 lines (190 sloc)
6.57 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Created on Sat May 11 08:56:41 2019 | |
@author: nolte | |
D. D. Nolte, Introduction to Modern Dynamics: Chaos, Networks, Space and Time, 2nd ed. (Oxford,2019) | |
""" | |
# https://www.python-course.eu/networkx.php | |
# https://networkx.github.io/documentation/stable/tutorial.html | |
# https://networkx.github.io/documentation/stable/reference/functions.html | |
import numpy as np | |
from scipy import integrate | |
from matplotlib import pyplot as plt | |
import networkx as nx | |
from UserFunction import linfit | |
import time | |
tstart = time.time() | |
plt.close('all') | |
Nfac = 25 # 25 | |
N = 100 # 50 | |
width = 0.2 | |
# model_case 1 = Complete Graph | |
# model_case 2 = Barabasi | |
# model_case 3 = Power Law | |
# model_case 4 = D-dimensional Hypercube | |
# model_case 5 = Erdos Renyi | |
# model_case 6 = Random Regular | |
# model_case 7 = Strogatz | |
# model_case 8 = Hexagonal lattice | |
# model_case 9 = Tree | |
# model_case 10 == 2D square lattice | |
model_case = int(input('Input Model Case (1-10)')) | |
if model_case == 1: # Complete Graph | |
facoef = 0.2 | |
nodecouple = nx.complete_graph(N) | |
elif model_case == 2: # Barabasi | |
facoef = 2 | |
k = 3 | |
nodecouple = nx.barabasi_albert_graph(N, k, seed=None) | |
elif model_case == 3: # Power law | |
facoef = 3 | |
k = 3 | |
triangle_prob = 0.3 | |
nodecouple = nx.powerlaw_cluster_graph(N, k, triangle_prob) | |
elif model_case == 4: | |
Dim = 6 | |
facoef = 3 | |
nodecouple = nx.hypercube_graph(Dim) | |
N = nodecouple.number_of_nodes() | |
elif model_case == 5: # Erdos-Renyi | |
facoef = 5 | |
prob = 0.1 | |
nodecouple = nx.erdos_renyi_graph(N, prob, seed=None, directed=False) | |
elif model_case == 6: # Random | |
facoef = 5 | |
nodecouple = nx.random_regular_graph(3, N, seed=None) | |
elif model_case == 7: # Watts | |
facoef = 7 | |
k = 4; # nearest neighbors | |
rewire_prob = 0.2 # rewiring probability | |
nodecouple = nx.watts_strogatz_graph(N, k, rewire_prob, seed=None) | |
elif model_case == 8: | |
facoef = 8 | |
rows = 4 | |
colm = 8 | |
nodecouple = nx.hexagonal_lattice_graph(rows, colm, periodic=True, with_positions=False) | |
N = nodecouple.number_of_nodes() | |
elif model_case == 9: # k-fold tree | |
facoef = 16 | |
k = 3 # degree | |
h = 3 # height | |
sm = 0 | |
for lp in range(h+1): | |
sm = sm + k**lp | |
N = sm | |
nodecouple = nx.balanced_tree(k, h) | |
elif model_case == 10: # square lattice | |
facoef = 3 | |
m = 6 | |
n = 6 | |
nodecouple = nx.grid_2d_graph(m, n, periodic=True) | |
N = nodecouple.number_of_nodes() | |
plt.figure(1) | |
nx.draw(nodecouple) | |
#nx.draw_circular(nodecouple) | |
#nx.draw_spring(nodecouple) | |
#nx.draw_spectral(nodecouple) | |
print('Number of nodes = ',nodecouple.number_of_nodes()) | |
print('Number of edges = ',nodecouple.number_of_edges()) | |
#print('Average degree = ',nx.k_nearest_neighbors(nodecouple)) | |
# function: omegout, yout = coupleN(G) | |
def coupleN(G): | |
# function: yd = flow_deriv(x_y) | |
def flow_deriv(y,t0): | |
yp = np.zeros(shape=(N,)) | |
ind = -1 | |
for omloop in G.node: | |
ind = ind + 1 | |
temp = omega[ind] | |
linksz = G.node[omloop]['numlink'] | |
for cloop in range(linksz): | |
cindex = G.node[omloop]['link'][cloop] | |
indx = G.node[cindex]['index'] | |
g = G.node[omloop]['coupling'][cloop] | |
temp = temp + g*np.sin(y[indx]-y[ind]) | |
yp[ind] = temp | |
yd = np.zeros(shape=(N,)) | |
for omloop in range(N): | |
yd[omloop] = yp[omloop] | |
return yd | |
# end of function flow_deriv(x_y) | |
mnomega = 1.0 | |
ind = -1 | |
for nodeloop in G.node: | |
ind = ind + 1 | |
omega[ind] = G.node[nodeloop]['element'] | |
x_y_z = omega | |
# Settle-down Solve for the trajectories | |
tsettle = 100 | |
t = np.linspace(0, tsettle, tsettle) | |
x_t = integrate.odeint(flow_deriv, x_y_z, t) | |
x0 = x_t[tsettle-1,0:N] | |
t = np.linspace(0,1000,1000) | |
y = integrate.odeint(flow_deriv, x0, t) | |
siztmp = np.shape(y) | |
sy = siztmp[0] | |
# Fit the frequency | |
m = np.zeros(shape = (N,)) | |
w = np.zeros(shape = (N,)) | |
mtmp = np.zeros(shape=(4,)) | |
btmp = np.zeros(shape=(4,)) | |
for omloop in range(N): | |
if np.remainder(sy,4) == 0: | |
mtmp[0],btmp[0] = linfit(t[0:sy//2],y[0:sy//2,omloop]); | |
mtmp[1],btmp[1] = linfit(t[sy//2+1:sy],y[sy//2+1:sy,omloop]); | |
mtmp[2],btmp[2] = linfit(t[sy//4+1:3*sy//4],y[sy//4+1:3*sy//4,omloop]); | |
mtmp[3],btmp[3] = linfit(t,y[:,omloop]); | |
else: | |
sytmp = 4*np.floor(sy/4); | |
mtmp[0],btmp[0] = linfit(t[0:sytmp//2],y[0:sytmp//2,omloop]); | |
mtmp[1],btmp[1] = linfit(t[sytmp//2+1:sytmp],y[sytmp//2+1:sytmp,omloop]); | |
mtmp[2],btmp[2] = linfit(t[sytmp//4+1:3*sytmp/4],y[sytmp//4+1:3*sytmp//4,omloop]); | |
mtmp[3],btmp[3] = linfit(t[0:sytmp],y[0:sytmp,omloop]); | |
#m[omloop] = np.median(mtmp) | |
m[omloop] = np.mean(mtmp) | |
w[omloop] = mnomega + m[omloop] | |
omegout = m | |
yout = y | |
return omegout, yout | |
# end of function: omegout, yout = coupleN(G) | |
Nlink = N*(N-1)//2 | |
omega = np.zeros(shape=(N,)) | |
omegatemp = width*(np.random.rand(N)-1) | |
meanomega = np.mean(omegatemp) | |
omega = omegatemp - meanomega | |
sto = np.std(omega) | |
lnk = np.zeros(shape = (N,), dtype=int) | |
ind = -1 | |
for loop in nodecouple.node: | |
ind = ind + 1 | |
nodecouple.node[loop]['index'] = ind | |
nodecouple.node[loop]['element'] = omega[ind] | |
nodecouple.node[loop]['link'] = list(nx.neighbors(nodecouple,loop)) | |
nodecouple.node[loop]['numlink'] = len(list(nx.neighbors(nodecouple,loop))) | |
lnk[ind] = len(list(nx.neighbors(nodecouple,loop))) | |
avgdegree = np.mean(lnk) | |
mnomega = 1 | |
facval = np.zeros(shape = (Nfac,)) | |
yy = np.zeros(shape=(Nfac,N)) | |
xx = np.zeros(shape=(Nfac,)) | |
for facloop in range(Nfac): | |
print(facloop) | |
fac = facoef*(16*facloop/(Nfac))*(1/(N-1))*sto/mnomega | |
ind = -1 | |
for nodeloop in nodecouple.node: | |
ind = ind + 1 | |
nodecouple.node[nodeloop]['coupling'] = np.zeros(shape=(lnk[ind],)) | |
for linkloop in range (lnk[ind]): | |
nodecouple.node[nodeloop]['coupling'][linkloop] = fac | |
facval[facloop] = fac*avgdegree | |
omegout, yout = coupleN(nodecouple) # Here is the subfunction call for the flow | |
for omloop in range(N): | |
yy[facloop,omloop] = omegout[omloop] | |
xx[facloop] = facval[facloop] | |
plt.figure(2) | |
lines = plt.plot(xx,yy) | |
plt.setp(lines, linewidth=0.5) | |
plt.show() | |
elapsed_time = time.time() - tstart | |
print('elapsed time = ',format(elapsed_time,'.2f'),'secs') |