Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Python-Programs-for-Nonlinear-Dynamics/SIRS.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
171 lines (125 sloc)
3.36 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Created on Fri July 17 2020 | |
D. D. Nolte, "Introduction to Modern Dynamics: | |
Chaos, Networks, Space and Time, 2nd Edition (Oxford University Press, 2019) | |
@author: nolte | |
""" | |
import numpy as np | |
from scipy import integrate | |
from matplotlib import pyplot as plt | |
plt.close('all') | |
def tripartite(x,y,z): | |
sm = x + y + z | |
xp = x/sm | |
yp = y/sm | |
f = np.sqrt(3)/2 | |
y0 = f*xp | |
x0 = -0.5*xp - yp + 1; | |
lines = plt.plot(x0,y0) | |
plt.setp(lines, linewidth=0.5) | |
plt.plot([0, 1],[0, 0],'k',linewidth=1) | |
plt.plot([0, 0.5],[0, f],'k',linewidth=1) | |
plt.plot([1, 0.5],[0, f],'k',linewidth=1) | |
plt.show() | |
print(' ') | |
print('SIRS.py') | |
def solve_flow(param,max_time=1000.0): | |
def flow_deriv(x_y,tspan,mu,betap,nu): | |
x, y = x_y | |
return [-mu*x + betap*x*(1-x-y),mu*x-nu*y] | |
x0 = [del1, del2] | |
# Solve for the trajectories | |
t = np.linspace(0, int(tlim), int(250*tlim)) | |
x_t = integrate.odeint(flow_deriv, x0, t, param) | |
return t, x_t | |
# rates per week | |
betap = 0.3; # infection rate | |
mu = 0.2; # recovery rate | |
nu = 0.02 # immunity decay rate | |
print('beta = ',betap) | |
print('mu = ',mu) | |
print('nu =',nu) | |
print('betap/mu = ',betap/mu) | |
del1 = 0.005 # initial infected | |
del2 = 0.005 # recovered | |
tlim = 600 # weeks (about 12 years) | |
param = (mu, betap, nu) # flow parameters | |
t, y = solve_flow(param) | |
I = y[:,0] | |
R = y[:,1] | |
S = 1 - I - R | |
plt.figure(1) | |
lines = plt.semilogy(t,I,t,S,t,R) | |
plt.ylim([0.001,1]) | |
plt.xlim([0,tlim]) | |
plt.legend(('Infected','Susceptible','Recovered')) | |
plt.setp(lines, linewidth=0.5) | |
plt.xlabel('Days') | |
plt.ylabel('Fraction of Population') | |
plt.title('Population Dynamics for COVID-19') | |
plt.show() | |
plt.figure(2) | |
plt.hold(True) | |
for xloop in range(0,10): | |
del1 = xloop/10.1 + 0.001 | |
del2 = 0.01 | |
tlim = 300 | |
param = (mu, betap, nu) # flow parameters | |
t, y = solve_flow(param) | |
I = y[:,0] | |
R = y[:,1] | |
S = 1 - I - R | |
tripartite(I,R,S); | |
for yloop in range(1,6): | |
del1 = 0.001; | |
del2 = yloop/10.1 | |
t, y = solve_flow(param) | |
I = y[:,0] | |
R = y[:,1] | |
S = 1 - I - R | |
tripartite(I,R,S); | |
for loop in range(2,10): | |
del1 = loop/10.1 | |
del2 = 1 - del1 - 0.01 | |
t, y = solve_flow(param) | |
I = y[:,0] | |
R = y[:,1] | |
S = 1 - I - R | |
tripartite(I,R,S); | |
plt.hold(False) | |
plt.title('Simplex Plot of COVID-19 Pop Dynamics') | |
vac = [1, 0.8, 0.6] | |
for loop in vac: | |
# Run the epidemic to the first peak | |
del1 = 0.005 | |
del2 = 0.005 | |
tlim = 52 | |
param = (mu, betap, nu) | |
t1, y1 = solve_flow(param) | |
# Now vaccinate a fraction of the population | |
st = np.size(t1) | |
del1 = y1[st-1,0] | |
del2 = y1[st-1,1] | |
tlim = 400 | |
param = (mu, loop*betap, nu) | |
t2, y2 = solve_flow(param) | |
t2 = t2 + t1[st-1] | |
tc = np.concatenate((t1,t2)) | |
yc = np.concatenate((y1,y2)) | |
I = yc[:,0] | |
R = yc[:,1] | |
S = 1 - I - R | |
plt.figure(3) | |
plt.hold(True) | |
lines = plt.semilogy(tc,I,tc,S,tc,R) | |
plt.ylim([0.001,1]) | |
plt.xlim([0,tlim]) | |
plt.legend(('Infected','Susceptible','Recovered')) | |
plt.setp(lines, linewidth=0.5) | |
plt.xlabel('Days') | |
plt.ylabel('Fraction of Population') | |
plt.title('Vaccination at 1 Year') | |
plt.show() | |
plt.hold(False) |