Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
SteinsGate2D.py
Created on Sat March 6, 2021
@author: David Nolte
Introduction to Modern Dynamics, 2nd edition (Oxford University Press, 2019)
2D simulation of Stein's Gate Divergence Meter
"""
import numpy as np
from scipy import integrate
from matplotlib import pyplot as plt
plt.close('all')
def solve_flow(param,lim = [-6,6,-6,6],max_time=20.0):
def flow_deriv(x_y, t0, alpha, beta, gamma):
#"""Compute the time-derivative ."""
x, y = x_y
w = 1
R2 = x**2 + y**2
R = np.sqrt(R2)
arg = (R-2)/0.1
env1 = 1/(1+np.exp(arg))
env2 = 1 - env1
f = env2*(x*(1/(R-1.99)**2 + 1e-2) - x) + env1*(w*y + w*x*(1 - R))
g = env2*(y*(1/(R-1.99)**2 + 1e-2) + y) + env1*(-w*x + w*y*(1 - R))
return [f,g]
model_title = 'Steins Gate'
plt.figure()
xmin = lim[0]
xmax = lim[1]
ymin = lim[2]
ymax = lim[3]
plt.axis([xmin, xmax, ymin, ymax])
N = 24*4 + 47
x0 = np.zeros(shape=(N,2))
ind = -1
for i in range(0,24):
ind = ind + 1
x0[ind,0] = xmin + (xmax-xmin)*i/23
x0[ind,1] = ymin
ind = ind + 1
x0[ind,0] = xmin + (xmax-xmin)*i/23
x0[ind,1] = ymax
ind = ind + 1
x0[ind,0] = xmin
x0[ind,1] = ymin + (ymax-ymin)*i/23
ind = ind + 1
x0[ind,0] = xmax
x0[ind,1] = ymin + (ymax-ymin)*i/23
ind = ind + 1
x0[ind,0] = 0.05
x0[ind,1] = 0.05
for thetloop in range(0,10):
ind = ind + 1
theta = 2*np.pi*(thetloop)/10
ys = 0.125*np.sin(theta)
xs = 0.125*np.cos(theta)
x0[ind,0] = xs
x0[ind,1] = ys
for thetloop in range(0,10):
ind = ind + 1
theta = 2*np.pi*(thetloop)/10
ys = 1.7*np.sin(theta)
xs = 1.7*np.cos(theta)
x0[ind,0] = xs
x0[ind,1] = ys
for thetloop in range(0,20):
ind = ind + 1
theta = 2*np.pi*(thetloop)/20
ys = 2*np.sin(theta)
xs = 2*np.cos(theta)
x0[ind,0] = xs
x0[ind,1] = ys
ind = ind + 1
x0[ind,0] = -3
x0[ind,1] = 0.05
ind = ind + 1
x0[ind,0] = -3
x0[ind,1] = -0.05
ind = ind + 1
x0[ind,0] = 3
x0[ind,1] = 0.05
ind = ind + 1
x0[ind,0] = 3
x0[ind,1] = -0.05
ind = ind + 1
x0[ind,0] = -6
x0[ind,1] = 0.00
ind = ind + 1
x0[ind,0] = 6
x0[ind,1] = 0.00
colors = plt.cm.prism(np.linspace(0, 1, N))
# Solve for the trajectories
t = np.linspace(0, max_time, int(250*max_time))
x_t = np.asarray([integrate.odeint(flow_deriv, x0i, t, param)
for x0i in x0])
for i in range(N):
x, y = x_t[i,:,:].T
lines = plt.plot(x, y, '-', c=colors[i])
plt.setp(lines, linewidth=1)
plt.show()
plt.title(model_title)
return t, x_t
param = (0.02,0.5,0.2) # Steins Gate
lim = (-6,6,-6,6)
t, x_t = solve_flow(param,lim)
plt.savefig('Steins Gate')