Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Python-Programs-for-Nonlinear-Dynamics/trirep.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
152 lines (119 sloc)
4 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
trirep.py | |
Created on Thu May 9 16:23:30 2019 | |
@author: nolte | |
Introduction to Modern Dynamics, 2nd edition (Oxford University Press, 2019) | |
Population dynamics | |
""" | |
import numpy as np | |
from scipy import integrate | |
from matplotlib import pyplot as plt | |
plt.close('all') | |
def tripartite(x,y,z): | |
sm = x + y + z | |
xp = x/sm | |
yp = y/sm | |
f = np.sqrt(3)/2 | |
y0 = f*xp | |
x0 = -0.5*xp - yp + 1; | |
plt.figure(2) | |
lines = plt.plot(x0,y0) | |
plt.setp(lines, linewidth=0.5) | |
plt.plot([0, 1],[0, 0],'k',linewidth=1) | |
plt.plot([0, 0.5],[0, f],'k',linewidth=1) | |
plt.plot([1, 0.5],[0, f],'k',linewidth=1) | |
plt.show() | |
def solve_flow(y,tspan): | |
def flow_deriv(y, t0): | |
#"""Compute the time-derivative .""" | |
f = np.zeros(shape=(N,)) | |
for iloop in range(N): | |
ftemp = 0 | |
for jloop in range(N): | |
ftemp = ftemp + A[iloop,jloop]*y[jloop] | |
f[iloop] = ftemp | |
phitemp = phi0 # Can adjust this from 0 to 1 to stabilize (but Nth population is no longer independent) | |
for loop in range(N): | |
phitemp = phitemp + f[loop]*y[loop] | |
phi = phitemp | |
yd = np.zeros(shape=(N,)) | |
for loop in range(N-1): | |
yd[loop] = y[loop]*(f[loop] - phi); | |
if np.abs(phi0) < 0.01: # average fitness maintained at zero | |
yd[N-1] = y[N-1]*(f[N-1]-phi); | |
else: # non-zero average fitness | |
ydtemp = 0 | |
for loop in range(N-1): | |
ydtemp = ydtemp - yd[loop] | |
yd[N-1] = ydtemp | |
return yd | |
# Solve for the trajectories | |
t = np.linspace(0, tspan, 701) | |
x_t = integrate.odeint(flow_deriv,y,t) | |
return t, x_t | |
# model_case 1 = zero diagonal | |
# model_case 2 = zero trace | |
# model_case 3 = asymmetric (zero trace) | |
print(' ') | |
print('trirep.py') | |
print('Case: 1 = antisymm zero diagonal') | |
print('Case: 2 = antisymm zero trace') | |
print('Case: 3 = random') | |
model_case = int(input('Enter the Model Case (1-3)')) | |
N = 3 | |
asymm = 3 # 1 = zero diag (replicator eqn) 2 = zero trace (autocatylitic model) 3 = random (but zero trace) | |
phi0 = 0.001 # average fitness (positive number) damps oscillations | |
T = 100; | |
if model_case == 1: | |
Atemp = np.zeros(shape=(N,N)) | |
for yloop in range(N): | |
for xloop in range(yloop+1,N): | |
Atemp[yloop,xloop] = 2*(0.5 - np.random.random(1)) | |
Atemp[xloop,yloop] = -Atemp[yloop,xloop] | |
if model_case == 2: | |
Atemp = np.zeros(shape=(N,N)) | |
for yloop in range(N): | |
for xloop in range(yloop+1,N): | |
Atemp[yloop,xloop] = 2*(0.5 - np.random.random(1)) | |
Atemp[xloop,yloop] = -Atemp[yloop,xloop] | |
Atemp[yloop,yloop] = 2*(0.5 - np.random.random(1)) | |
tr = np.trace(Atemp) | |
A = Atemp | |
for yloop in range(N): | |
A[yloop,yloop] = Atemp[yloop,yloop] - tr/N | |
else: | |
Atemp = np.zeros(shape=(N,N)) | |
for yloop in range(N): | |
for xloop in range(N): | |
Atemp[yloop,xloop] = 2*(0.5 - np.random.random(1)) | |
tr = np.trace(Atemp) | |
A = Atemp | |
for yloop in range(N): | |
A[yloop,yloop] = Atemp[yloop,yloop] - tr/N | |
plt.figure(3) | |
im = plt.matshow(A,3,cmap=plt.cm.get_cmap('seismic')) # hsv, seismic, bwr | |
cbar = im.figure.colorbar(im) | |
M = 20 | |
delt = 1/M | |
ep = 0.01; | |
tempx = np.zeros(shape = (3,)) | |
for xloop in range(M): | |
tempx[0] = delt*(xloop)+ep; | |
for yloop in range(M-xloop): | |
tempx[1] = delt*yloop+ep | |
tempx[2] = 1 - tempx[0] - tempx[1] | |
x0 = tempx/np.sum(tempx); # initial populations | |
tspan = 70 | |
t, x_t = solve_flow(x0,tspan) | |
y1 = x_t[:,0] | |
y2 = x_t[:,1] | |
y3 = x_t[:,2] | |
plt.figure(1) | |
lines = plt.plot(t,y1,t,y2,t,y3) | |
plt.setp(lines, linewidth=0.5) | |
plt.show() | |
plt.ylabel('X Position') | |
plt.xlabel('Time') | |
tripartite(y1,y2,y3) |