From 44fa415f815eda2cd1b4ce1d9a0580206085d237 Mon Sep 17 00:00:00 2001 From: David Nolte Date: Fri, 19 Mar 2021 12:51:47 -0400 Subject: [PATCH] Create SteinsGate2D.py --- SteinsGate2D.py | 132 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 132 insertions(+) create mode 100644 SteinsGate2D.py diff --git a/SteinsGate2D.py b/SteinsGate2D.py new file mode 100644 index 0000000..d034856 --- /dev/null +++ b/SteinsGate2D.py @@ -0,0 +1,132 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +SteinsGate2D.py +Created on Sat March 6, 2021 + +@author: David Nolte +Introduction to Modern Dynamics, 2nd edition (Oxford University Press, 2019) + +2D simulation of Stein's Gate Divergence Meter +""" +import numpy as np +from scipy import integrate +from matplotlib import pyplot as plt + +plt.close('all') + +def solve_flow(param,lim = [-6,6,-6,6],max_time=20.0): + + + def flow_deriv(x_y, t0, alpha, beta, gamma): + #"""Compute the time-derivative .""" + x, y = x_y + + w = 1 + R2 = x**2 + y**2 + R = np.sqrt(R2) + arg = (R-2)/0.1 + env1 = 1/(1+np.exp(arg)) + env2 = 1 - env1 + + f = env2*(x*(1/(R-1.99)**2 + 1e-2) - x) + env1*(w*y + w*x*(1 - R)) + g = env2*(y*(1/(R-1.99)**2 + 1e-2) + y) + env1*(-w*x + w*y*(1 - R)) + + return [f,g] + model_title = 'Steins Gate' + + plt.figure() + xmin = lim[0] + xmax = lim[1] + ymin = lim[2] + ymax = lim[3] + plt.axis([xmin, xmax, ymin, ymax]) + + N = 24*4 + 47 + x0 = np.zeros(shape=(N,2)) + ind = -1 + for i in range(0,24): + ind = ind + 1 + x0[ind,0] = xmin + (xmax-xmin)*i/23 + x0[ind,1] = ymin + ind = ind + 1 + x0[ind,0] = xmin + (xmax-xmin)*i/23 + x0[ind,1] = ymax + ind = ind + 1 + x0[ind,0] = xmin + x0[ind,1] = ymin + (ymax-ymin)*i/23 + ind = ind + 1 + x0[ind,0] = xmax + x0[ind,1] = ymin + (ymax-ymin)*i/23 + ind = ind + 1 + x0[ind,0] = 0.05 + x0[ind,1] = 0.05 + + for thetloop in range(0,10): + ind = ind + 1 + theta = 2*np.pi*(thetloop)/10 + ys = 0.125*np.sin(theta) + xs = 0.125*np.cos(theta) + x0[ind,0] = xs + x0[ind,1] = ys + + for thetloop in range(0,10): + ind = ind + 1 + theta = 2*np.pi*(thetloop)/10 + ys = 1.7*np.sin(theta) + xs = 1.7*np.cos(theta) + x0[ind,0] = xs + x0[ind,1] = ys + + for thetloop in range(0,20): + ind = ind + 1 + theta = 2*np.pi*(thetloop)/20 + ys = 2*np.sin(theta) + xs = 2*np.cos(theta) + x0[ind,0] = xs + x0[ind,1] = ys + + ind = ind + 1 + x0[ind,0] = -3 + x0[ind,1] = 0.05 + ind = ind + 1 + x0[ind,0] = -3 + x0[ind,1] = -0.05 + ind = ind + 1 + x0[ind,0] = 3 + x0[ind,1] = 0.05 + ind = ind + 1 + x0[ind,0] = 3 + x0[ind,1] = -0.05 + ind = ind + 1 + x0[ind,0] = -6 + x0[ind,1] = 0.00 + ind = ind + 1 + x0[ind,0] = 6 + x0[ind,1] = 0.00 + + colors = plt.cm.prism(np.linspace(0, 1, N)) + + # Solve for the trajectories + t = np.linspace(0, max_time, int(250*max_time)) + x_t = np.asarray([integrate.odeint(flow_deriv, x0i, t, param) + for x0i in x0]) + + for i in range(N): + x, y = x_t[i,:,:].T + lines = plt.plot(x, y, '-', c=colors[i]) + plt.setp(lines, linewidth=1) + + + plt.show() + plt.title(model_title) + + + return t, x_t + +param = (0.02,0.5,0.2) # Steins Gate +lim = (-6,6,-6,6) + +t, x_t = solve_flow(param,lim) + +plt.savefig('Steins Gate')