Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
cody2 authored Dec 25, 2022
1 parent 0fb4f76 commit 3517317
Showing 1 changed file with 259 additions and 0 deletions.
259 changes: 259 additions & 0 deletions N803_shared_noN.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,259 @@
%% N803_shared_noN.m - solves model for 2 cohorts with shared parameters
%
% Edits of 'N803_shared.m' to zero out non-SIV-specific CD8+ T cells noted !!
%
%#ok<*NASGU> suppressing 'variable is not used'
%
% /--------------------------------------------------------------\
% | Date: 12/25/2022 |
% | Author: Jonathan Cody |
% | Affiliation: Purdue University |
% | Weldon School of Biomedical Engineering |
% | Pienaar Computational Systems Pharmacology Lab |
% \--------------------------------------------------------------/
%
% Nomenclature: V = SIV virions [#/無]
% T8 = total CD8+ T cells [#/無]
% S0 = resting SIV-specific CD8+ T cells [#/無]
% Sa = active SIV-specific CD8+ T cells [#/無]
% N0 = resting non-SIV-specific CD8+ T cells [#/無]
% Na = active non-SIV-specific CD8+ T cells [#/無]
% X = N803 at absorption site [pmol/kg]
% C = N803 plasma concentration [pM]
% R = regulation [] (dimensionless quantity)
%
%% ========================================================================
% INPUTS
% ========================================================================
%
% SoluTimes = ascending vector of days at which to evaluate solution
%
% DoseTimes{c} = ascending vector of days at which to administer doses
% (elements of 'DoseTimes' must also be in 'SoluTimes')
%
% AllPars = vector of parameters (see list in function)
%
%% ========================================================================
% OPTIONS
% ========================================================================
%
% SkipTimes{c} = [min max] time point beyond which to skip model solving
% (outputs before 'min' will be made equal to output at 'min')
% (leave as [] to ignore and solve for all 'SoluTimes')
%
% oneCohort = scalar to run model for just one cohort ('1' or '2')
% (leave as [] to ignore and solve for both cohorts)
%
% All additional inputs will be passed as a cell vector to 'N803_model_2'
% and used to define options (see function for list)
% EX: N803_single(SoluTimes,DoseTimes,AllPars,'AbsTol',1e-2}
% will set ode solver absolute tolerance to 1e-2
%
%% ========================================================================
% OUTPUTS
% ========================================================================
%
% Y_OUT(:,1) = V at points in 'SoluTimes' [log fold change] cohort 1
% Y_OUT(:,2) = T8 at points in 'SoluTimes' [fold change] cohort 1
% Y_OUT(:,3) = V at points in 'SoluTimes' [log fold change] cohort 2
% Y_OUT(:,4) = T8 at points in 'SoluTimes' [fold change] cohort 2
%
% PARS(1,:) = parameters for cohort 1 (see code)
% PARS(2,:) = parameters for cohort 2 (see code)
%
%% ========================================================================
% FUNCTION
% ========================================================================
function [Y_OUT,PARS] = ...
N803_shared_noN(SoluTimes,DoseTimes,AllPars,SkipTimes,oneCohort,...
varargin)

if isempty(oneCohort) ; RunCohort = [ 1 1 ] ;
elseif oneCohort == 1 ; RunCohort = [ 1 0 ] ;
else ; RunCohort = [ 0 1 ] ;
end

Y_Cohort = cell(1,2) ;% cell for storing outputs
P_Cohort = cell(1,2) ;% cell for storing parmeters

% Rename inputed parameters -----------------------------------------------
Vi(1) = AllPars(01) ;% V initial value [log(#/mL)] (cohort 1)
Vi(2) = AllPars(02) ;% V initial value [log(#/mL)] (cohort 2)
SNi(1) = AllPars(03) ;% S+N initial value [#/無] (cohort 1)
SNi(2) = AllPars(04) ;% S+N initial value [#/無] (cohort 2)
fS(1) = AllPars(05) ;% initial frequency: S/(S+N) (cohort 1)
fSn = AllPars(06) ;% normalized S/(S+N) (co 2)
fS(2) = fS(1) ;% +(0.3-fS(1))*fSn ;% initial frequency: S/(S+N) (cohort 2) !!

q = AllPars(07) ;% V growth rate (if S+N were absent) [/d]
psi = AllPars(08) ;% ratio of base killing rates gN0/gS0
V50S = AllPars(09) ;% 50% viral stimulation saturation for S [#/mL]
V50N = AllPars(10) ;% 50% viral stimulation saturation for N [#/mL]
mSn = AllPars(11) ;% normalized Sa reversion rate constant []
mNn = AllPars(12) ;% normalized Na reversion rate constant []

SN50 = AllPars(13) ;% 50% S+N proliferation saturation [#/無]
p0n = AllPars(14) ;% nomalized S0/N0 proliferation rate constant [/d]
pS = AllPars(15) ;% Sa proliferation rate constant [/d]
pN = AllPars(16) ;% Na proliferation rate constant [/d]
d = AllPars(17) ;% S0/N0 death rate constant [/d]
dA = AllPars(18) ;% Sa/Na death rate constant [/d]

Xi = AllPars(19) ;% X initial condition [pmol/kg]
ka = AllPars(20) ;% N803 absorption rate constant [/d]
ke = AllPars(21) ;% N803 elimination rate constant [/d]
vd = AllPars(22) ;% N803 'volume of distribution'/'bioavailability' [L/kg]
C50 = AllPars(23) ;% 50% N803 stimulation concentration [pM] (Cohort 1)
pm = AllPars(24) ;% S0/N0 maximum proliferation rate []
aS1 = AllPars(25) ;% S activation stimulation factor []
aN1 = AllPars(26) ;% N activation stimulation factor []

dR = AllPars(27) ;% R decay rate constant [/d]
sig = AllPars(28) ;% ratio of initial regulation due to N/S
p2 = AllPars(29) ;% S0/N0 proliferation regulation factor []
gN2 = AllPars(30) ;% N killing regulation factor [] (cohort 1)

%% ------------------------------------------------------------------------
% Calculate some initial conditions & parameters --------------------------

Vi = 10.^(Vi - 3) ;% converting V initial value [#/無]
V50S = V50S/1000 ;% 50% viral stimulation saturation for S [#/無]
V50N = V50N/1000 ;% 50% viral stimulation saturation for N [#/無]
YS = Vi ./ (Vi+ V50S) ;% initial V/(V50S+V) [cohort 1,2]
YN = Vi ./ (Vi+ V50N) ;% initial V/(V50N+V) [cohort 1,2]

% calculate initial R, and sS,sN
z = YS + sig*YN ;
Ri = [ 1 , (z(2)/z(1)) ] ;% initial regulation [cohort 1,2]
R = Ri(2) ;% initial regulation (cohort 2)
sS = dR / ( YS(1) + sig*YN(1) ) ;% R generation due to S0 activation [/d]
sN = sig*sS ;% R generation due to N0 activation [/d]

% restrict mS and mN such that initial activation aS and aN are positive
US = 2*(2*pS/(pS+dA))^7 ;
UN = 2* 2*pN/(pN+dA) ;
mS = mSn*dA/(US-1) ;% Sa reversion rate constant [/d]
mN = mNn*dA/(UN-1) ;% Na reversion rate constant [/d]

% restrict p0 to ensure same sign for S0/SA and for N0/NA
p0_max = min( d*(1+p2*Ri).*(SN50+SNi)/SN50 ) ;% maximum value for p0
p0 = p0n * p0_max ;% S0/N0 prolif rate constant [/d]
p1 = pm/p0 ;% S0/N0 proliferation stimulation factor
pi = p0*SN50./(SN50+SNi)./(1+p2*Ri) ;% initial S0/N0 prolif rate [/d]

% calculate aS0,aN0 and aS2,aN2
aSi = (d-pi)/( mS*US/(dA+mS) - 1 ) ;% initial S0 activation rate [/d]
aNi = (d-pi)/( mN*UN/(dA+mN) - 1 ) ;% initial N0 activation rate [/d]
z = aSi./YS ;
aS2 = ( z(1)-z(2) ) / ( R*z(2)-z(1) ) ;% S0 activation rate constant [/d]
aS0 = aSi(1) / YS(1) * (1+aS2) ;% S activation regulation factor []
z = aNi./YN ;
aN2 = ( z(1)-z(2) ) / ( R*z(2)-z(1) ) ;% N0 activation rate constant [/d]
aN0 = aNi(1) / YN(1) * (1+aN2) ;% N activation regulation factor []

% solve for initial ratios below (based on active steady-state)
ZS = US/(mS+dA) ;
for i = 1:7
ZS = ZS + 2*(2*pS)^(i-1)/(pS+dA)^i ;% SAi/aSi/S0i
end
ZN = UN/(mN+dA) + 2/(pN+dA) ;% NAi/aNi/N0i

% solve for initial values of S0,Sa,N0,Na each cohort
Si = SNi.*fS ;% initial S
Ni = SNi.*(1-fS) ;% initial N
S0 = Si./(1+ZS*aSi) ;% initial S0
N0 = Ni./(1+ZN*aNi) ;% initial N0
SA = S0.*(ZS*aSi) ;% initial SA
NA = N0.*(ZN*aNi) ;% initial NA

% calculate gS0,gN0 and gS2
beta = psi * NA ./ (1+gN2*Ri) ; z = beta(1) - beta(2) ;
a = z*R ; b = SA(1)*R - SA(2) + z*(1+R) ; c = SA(1) - SA(2) + z ;
gS2 = -c/b ;% ( -b + sqrt(b^2 - 4*a*c) ) / (2*a) ;% S killing regulation factor [] !!
gS0 = q / ( SA(1)/(1+gS2) + beta(1) ) ;% Sa killing rate constant [無/#-d]
gN0 = psi * gS0 ;% Na killing rate constant [無/#-d]

%% Do for each cohort (NOT indenting loop) ================================
for c = 1:2

% solve for initial S1-8 and N1-2
S = zeros(1,8) ;% initial S1-S8
S(1) = 2*aSi(c)*S0(c) / (dA+pS) ;% S1
for i = 2:7
S(i) = 2*pS*S(i-1) / (dA+pS) ;% S2 to S7
end
S(8) = 2*pS*S(7) / (dA+mS) ;% S8

N(1) = 2*aNi(c)*N0(c) / (dA+pN) ;% N1
N(2) = 2*pN*N(1) / (dA+mN) ;% N2

%% ------------------------------------------------------------------------
% Prepare parameter and initial value vectors and call 'N803_model_2' -----

Pars(01) = q ;% V growth rate (if S+N were absent) [/d]
Pars(02) = gS0 ;% Sa killing rate constant [無/#-d]
Pars(03) = gN0 ;% Na killing rate constant [無/#-d]

Pars(04) = V50S ;% 50% viral stimulation saturation for S [#/無]
Pars(05) = V50N ;% 50% viral stimulation saturation for N [#/無]
Pars(06) = aS0 ;% S0 activation rate constant [/d]
Pars(07) = aN0 ;% N0 activation rate constant [/d]
Pars(08) = mS ;% Sa reversion rate constant [/d]
Pars(09) = mN ;% Na reversion rate constant [/d]

Pars(10) = SN50 ;% 50% S+N proliferation saturation [#/無]
Pars(11) = p0 ;% S0/N0 proliferation rate constant [/d]
Pars(12) = pS ;% Sa proliferation rate constant [/d]
Pars(13) = pN ;% Na proliferation rate constant [/d]
Pars(14) = d ;% S0/N0 death rate constant [/d]
Pars(15) = dA ;% Sa/Na death rate constant [/d]

Pars(16) = Xi ;% X initial condition [pmol/kg]
Pars(17) = ka ;% N803 absorption rate constant [/d]
Pars(18) = ke ;% N803 elimination rate constant [/d]
Pars(19) = vd ;% N803 'volume of distribution'/'bioavailability' [L/kg]
Pars(20) = C50 ;% 50% N803 stimulation concentration [pM]
Pars(21) = p1 ;% S0/N0 proliferation stimulation factor []
Pars(22) = aS1 ;% S activation stimulation factor []
Pars(23) = aN1 ;% N activation stimulation factor []

Pars(24) = sS ;% R generation due to S0 activation [/d]
Pars(25) = sN ;% R generation due to N0 activation [/d]
Pars(26) = dR ;% R decay rate constant [/d]
Pars(27) = gS2 ;% S killing regulation factor []
Pars(28) = gN2 ;% N killing regulation factor []
Pars(29) = p2 ;% S0/N0 proliferation regulation factor []
Pars(30) = aS2 ;% S activation regulation factor []
Pars(31) = aN2 ;% N activation regulation factor []

% V S0-8 N0-2 X C R initial values
Yic = [ Vi(c) S0(c) S N0(c) N 0 0 Ri(c) Ri(c) ] ;

% if any( [ Pars([1:6 8 10:30 ]) Yic ] < 0 ) % !!
% error('Negative parameters or initial values.')
% end

% If 'SkipTimes' is empty, do not skip any times
if isempty(SkipTimes{c}) ; SkipTimes{c} = [-inf inf] ; end

idLo = SoluTimes < SkipTimes{c}(1) ;% index of early times to skip soln
idHi = SoluTimes > SkipTimes{c}(2) ;% index of later times to skip soln
idSol = ~ ( idLo | idHi ) ;% index of times in 'SoluTimes' to solve

if RunCohort(c) == 1
Y_COH = N803_model_2(SoluTimes(idSol),DoseTimes{c},Pars,Yic,varargin) ;
Y_LO = ones(sum(idLo),1)*Y_COH(1 ,:) ;% constant Y for early times
Y_HI = ones(sum(idHi),1)*Y_COH(end,:) ;% constant Y for later times
Y_COH = [ Y_LO ; Y_COH ; Y_HI ] ;%#ok<AGROW> % total 'solution' matrix
Y_Cohort{c} = Y_COH ;
P_Cohort{c} = [ Pars Yic ] ;
end

end

%% Prepare main outputs 'Y_OUT' and 'PARS' ================================

Y_OUT = [ Y_Cohort{1} , Y_Cohort{2} ] ;
PARS = [ P_Cohort{1} ; P_Cohort{2} ] ;

end

0 comments on commit 3517317

Please sign in to comment.