Skip to content

Commit

Permalink
Added model
Browse files Browse the repository at this point in the history
  • Loading branch information
Gaurav S Deshmukh committed Sep 22, 2023
1 parent 836799a commit 39ab2ca
Showing 1 changed file with 153 additions and 0 deletions.
153 changes: 153 additions & 0 deletions src/models.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
"""Graph neural network models."""

import torch
import torch.nn as nn
import torch_geometric.nn as gnn

class MultiGCN(gnn.MessagePassing):
"""Class to customize the graph neural network."""
def __init__(self, partition_configs):
"""Initialize the graph neural network.
Parameters
----------
partition_configs: List[Dict]
List of dictionaries containing parameters for the GNN for each
partition. The number of different GNNs are judged based on the
size of the list. Each partition config should contain the following
keys: n_conv (number of convolutional layers, int), n_hidden (number
of hidden layers, int), conv_size (feature size before convolution, int)
hidden_size (nodes per hidden layer node, int), dropout (dropout
probability for hidden layers, float), conv_type (type of convolution
layer, str; currently only "CGConv" is supported), pool_type
(type of pooling layer, str; currently "add" and "mean" are supported),
num_node_features (number of node features, int), num_edge_features
(number of edge features, int).
"""
# Store hyperparameters
self.n_conv = [config["n_conv"] for config in partition_configs]
self.n_hidden = [config["n_hidden"] for config in partition_configs]
self.hidden_size = [config["hidden_size"] for config in partition_configs]
self.conv_size = [config["conv_size"] for config in partition_configs]
self.conv_type = [config["conv_type"] for config in partition_configs]
self.dropout = [config["dropout"] for config in partition_configs]
self.num_node_features = [
config["num_node_features"] for config in partition_configs
]
self.num_edge_features = [
config["num_node_features"] for config in partition_configs
]
self.n_partitions = len(partition_configs)

# Initialize layers
# Initial transform
self.init_transform = []
for i in range(self.n_partitions):
self.init_transform.append(
nn.ModuleList(
nn.Linear(self.num_node_features[i], self.conv_size[i]),
nn.LeakyReLU(inplace=True),
)
)

# Convolutional layers
self.init_conv_layers()

# Pooling layers
self.pool_layers = []
for i in range(self.n_partitions):
self.pool_layers.append(gnn.pool.global_addpool())

# Pool transform
self.pool_transform = []
for i in range(self.n_partitions):
self.pool_transform.append(
nn.ModuleList(
nn.Linear(self.conv_size[i], self.hidden_size[i]),
nn.LeakyReLU(inplace=True),
)
)

# Hidden layers
self.hidden_layers = []
for i in range(self.n_partitions):
self.hidden_layers.append(
nn.ModuleList([
nn.Linear(self.hidden_size[i], self.hidden_size[i]),
nn.LeakyReLU(inplace=True),
nn.Dropout(p=self.dropout),
] * (self.hidden_layers - 1) +
[
nn.Linear(self.hidden_size[i], 1),
nn.LeakyReLU(inplace=True),
nn.Dropout(p=self.dropout),
]
)
)

# Final linear layer
# TODO: replace 1 with multiple outputs
self.final_lin_transform = nn.Linear(self.n_partitions, 1)


def init_conv_layers(self):
"""Initialize convolutional layers."""
self.conv_layers = []
for i in range(self.n_partitions):
part_conv_layers = []
for j in range(self.n_conv):
conv_layer = [
gnn.CGConv(
channels=self.num_node_features[i],
dim=self.num_edge_features[i],
batch_norm=True
),
nn.LeakyReLU(inplace=True)
]
part_conv_layers.append(conv_layer)

self.conv_layers.append(nn.ModuleList(part_conv_layers))

def forward(self, data_objects):
"""Foward pass of the network(s).
Parameters
----------
data_objects: list
List of data objects, each corresponding to a graph of a partition
of an atomic structure.
Returns
------
dict
Dictionary containing "output" and "contributions".
"""
# Initialize empty list for contributions
contributions = []
# For each data object
for i, data in enumerate(data_objects):
# Apply initial transform
conv_data = self.init_transform[i](data)

# Apply convolutional layers
for layer in self.conv_layers[i]:
conv_data = layer(conv_data)

# Apply pooling layer
pooled_data = self.pool_layers[i](conv_data)

# Apply pool-to-hidden transform
hidden_data = self.pool_transform[i](pooled_data)

# Apply hidden layers
for layer in self.hidden_layers[i]:
hidden_data = layer(hidden_data)

# Save contribution
contributions.append(hidden_data)

# Apply final transformation
output = self.final_lin_transform(*contributions)

return {"output": output, "contributions": contributions}

0 comments on commit 39ab2ca

Please sign in to comment.