-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Gaurav S Deshmukh
committed
Sep 22, 2023
1 parent
836799a
commit 39ab2ca
Showing
1 changed file
with
153 additions
and
0 deletions.
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,153 @@ | ||
| """Graph neural network models.""" | ||
|
|
||
| import torch | ||
| import torch.nn as nn | ||
| import torch_geometric.nn as gnn | ||
|
|
||
| class MultiGCN(gnn.MessagePassing): | ||
| """Class to customize the graph neural network.""" | ||
| def __init__(self, partition_configs): | ||
| """Initialize the graph neural network. | ||
| Parameters | ||
| ---------- | ||
| partition_configs: List[Dict] | ||
| List of dictionaries containing parameters for the GNN for each | ||
| partition. The number of different GNNs are judged based on the | ||
| size of the list. Each partition config should contain the following | ||
| keys: n_conv (number of convolutional layers, int), n_hidden (number | ||
| of hidden layers, int), conv_size (feature size before convolution, int) | ||
| hidden_size (nodes per hidden layer node, int), dropout (dropout | ||
| probability for hidden layers, float), conv_type (type of convolution | ||
| layer, str; currently only "CGConv" is supported), pool_type | ||
| (type of pooling layer, str; currently "add" and "mean" are supported), | ||
| num_node_features (number of node features, int), num_edge_features | ||
| (number of edge features, int). | ||
| """ | ||
| # Store hyperparameters | ||
| self.n_conv = [config["n_conv"] for config in partition_configs] | ||
| self.n_hidden = [config["n_hidden"] for config in partition_configs] | ||
| self.hidden_size = [config["hidden_size"] for config in partition_configs] | ||
| self.conv_size = [config["conv_size"] for config in partition_configs] | ||
| self.conv_type = [config["conv_type"] for config in partition_configs] | ||
| self.dropout = [config["dropout"] for config in partition_configs] | ||
| self.num_node_features = [ | ||
| config["num_node_features"] for config in partition_configs | ||
| ] | ||
| self.num_edge_features = [ | ||
| config["num_node_features"] for config in partition_configs | ||
| ] | ||
| self.n_partitions = len(partition_configs) | ||
|
|
||
| # Initialize layers | ||
| # Initial transform | ||
| self.init_transform = [] | ||
| for i in range(self.n_partitions): | ||
| self.init_transform.append( | ||
| nn.ModuleList( | ||
| nn.Linear(self.num_node_features[i], self.conv_size[i]), | ||
| nn.LeakyReLU(inplace=True), | ||
| ) | ||
| ) | ||
|
|
||
| # Convolutional layers | ||
| self.init_conv_layers() | ||
|
|
||
| # Pooling layers | ||
| self.pool_layers = [] | ||
| for i in range(self.n_partitions): | ||
| self.pool_layers.append(gnn.pool.global_addpool()) | ||
|
|
||
| # Pool transform | ||
| self.pool_transform = [] | ||
| for i in range(self.n_partitions): | ||
| self.pool_transform.append( | ||
| nn.ModuleList( | ||
| nn.Linear(self.conv_size[i], self.hidden_size[i]), | ||
| nn.LeakyReLU(inplace=True), | ||
| ) | ||
| ) | ||
|
|
||
| # Hidden layers | ||
| self.hidden_layers = [] | ||
| for i in range(self.n_partitions): | ||
| self.hidden_layers.append( | ||
| nn.ModuleList([ | ||
| nn.Linear(self.hidden_size[i], self.hidden_size[i]), | ||
| nn.LeakyReLU(inplace=True), | ||
| nn.Dropout(p=self.dropout), | ||
| ] * (self.hidden_layers - 1) + | ||
| [ | ||
| nn.Linear(self.hidden_size[i], 1), | ||
| nn.LeakyReLU(inplace=True), | ||
| nn.Dropout(p=self.dropout), | ||
| ] | ||
| ) | ||
| ) | ||
|
|
||
| # Final linear layer | ||
| # TODO: replace 1 with multiple outputs | ||
| self.final_lin_transform = nn.Linear(self.n_partitions, 1) | ||
|
|
||
|
|
||
| def init_conv_layers(self): | ||
| """Initialize convolutional layers.""" | ||
| self.conv_layers = [] | ||
| for i in range(self.n_partitions): | ||
| part_conv_layers = [] | ||
| for j in range(self.n_conv): | ||
| conv_layer = [ | ||
| gnn.CGConv( | ||
| channels=self.num_node_features[i], | ||
| dim=self.num_edge_features[i], | ||
| batch_norm=True | ||
| ), | ||
| nn.LeakyReLU(inplace=True) | ||
| ] | ||
| part_conv_layers.append(conv_layer) | ||
|
|
||
| self.conv_layers.append(nn.ModuleList(part_conv_layers)) | ||
|
|
||
| def forward(self, data_objects): | ||
| """Foward pass of the network(s). | ||
| Parameters | ||
| ---------- | ||
| data_objects: list | ||
| List of data objects, each corresponding to a graph of a partition | ||
| of an atomic structure. | ||
| Returns | ||
| ------ | ||
| dict | ||
| Dictionary containing "output" and "contributions". | ||
| """ | ||
| # Initialize empty list for contributions | ||
| contributions = [] | ||
| # For each data object | ||
| for i, data in enumerate(data_objects): | ||
| # Apply initial transform | ||
| conv_data = self.init_transform[i](data) | ||
|
|
||
| # Apply convolutional layers | ||
| for layer in self.conv_layers[i]: | ||
| conv_data = layer(conv_data) | ||
|
|
||
| # Apply pooling layer | ||
| pooled_data = self.pool_layers[i](conv_data) | ||
|
|
||
| # Apply pool-to-hidden transform | ||
| hidden_data = self.pool_transform[i](pooled_data) | ||
|
|
||
| # Apply hidden layers | ||
| for layer in self.hidden_layers[i]: | ||
| hidden_data = layer(hidden_data) | ||
|
|
||
| # Save contribution | ||
| contributions.append(hidden_data) | ||
|
|
||
| # Apply final transformation | ||
| output = self.final_lin_transform(*contributions) | ||
|
|
||
| return {"output": output, "contributions": contributions} | ||
|
|