Skip to content

Commit

Permalink
Decent model
Browse files Browse the repository at this point in the history
  • Loading branch information
Gaurav S Deshmukh committed Sep 25, 2023
1 parent b078dff commit c8accc4
Show file tree
Hide file tree
Showing 3 changed files with 13 additions and 10 deletions.
4 changes: 3 additions & 1 deletion src/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,8 @@ def __init__(self, partition_configs):
self.final_lin_transform = nn.Linear(self.n_partitions, 1, bias=False)
with torch.no_grad():
self.final_lin_transform.weight.copy_(torch.ones(self.n_partitions))
for p in self.final_lin_transform.parameters():
p.requires_grad = False

def init_conv_layers(self):
"""Initialize convolutional layers."""
Expand All @@ -110,7 +112,7 @@ def init_conv_layers(self):
gnn.CGConv(
channels=self.conv_size[i],
dim=self.num_edge_features[i],
batch_norm=False,
batch_norm=True,
),
nn.LeakyReLU(inplace=True),
]
Expand Down
1 change: 1 addition & 0 deletions src/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -367,6 +367,7 @@ def predict(self, dataset, indices, return_targets=False):
predictions[i] = self.standardizer.restore(pred_dict["output"].cpu().detach())
conts_std = pred_dict["contributions"].cpu().detach()
contributions[i, :] = self.standardizer.restore_cont(conts_std).numpy().flatten()
#contributions[i, :] = pred_dict["contributions"].cpu().detach().numpy().flatten()

predictions_dict = {
"targets": targets,
Expand Down
18 changes: 9 additions & 9 deletions workflows/basic_train_val_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,14 +45,14 @@
"metric_function": "mae",
"learning_rate": 0.001,
"optimizer": "adam",
"lr_milestones": [100]
"lr_milestones": [75]
}
partition_configs = [
{
"n_conv": 5,
"n_hidden": 2,
"hidden_size": 50,
"conv_size": 50,
"n_conv": 3,
"n_hidden": 1,
"hidden_size": 20,
"conv_size": 20,
"dropout": 0.1,
"num_node_features": dataset[0][0].num_node_features,
"num_edge_features": dataset[0][0].num_edge_features,
Expand Down Expand Up @@ -82,13 +82,13 @@

model_path = REPO_PATH / "trained_models" / "S_binary_calcs"
model = Model(global_config, partition_configs, model_path)
#model.init_standardizer([dataset[i][0].y for i in sample_idx["train"]])
#results_dict = model.train(200, dataloader_dict, verbose=True)
#print(f"Test metric: {results_dict['metric']['test']}")
model.init_standardizer([dataset[i][0].y for i in sample_idx["train"]])
results_dict = model.train(100, dataloader_dict, verbose=True)
print(f"Test metric: {results_dict['metric']['test']}")

# Load model
model.load(best_status=True)

# Make predictions on a structure
pred_dict = model.predict(dataset, [200], return_targets=True)
pred_dict = model.predict(dataset, [0, 100, 200, 500], return_targets=True)
print(pred_dict)

0 comments on commit c8accc4

Please sign in to comment.