-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from Nolte-Group/cleanup
Decoder training modularized
- Loading branch information
Showing
3 changed files
with
72 additions
and
67 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,42 +1,83 @@ | ||
| #-*- coding: utf-8 -*- | ||
|
|
||
| import keras | ||
| from keras import Model | ||
| import time | ||
| import typing | ||
| from typing import List | ||
|
|
||
| def load_decoder(input_shape, n_classes): | ||
| """ | ||
| """ | ||
| from model.model import DecoderModel | ||
| """ | ||
| # data parameters | ||
| SPLIT = params["split"] | ||
| LOAD_FROM_SCRATCH = params["load_from_scratch"] | ||
| model = DecoderModel(input_shape, HEAD_SIZE, NUM_HEADS, FF_DIM, | ||
| NUM_TRANSFORMER_BLOCKS, MLP_UNITS, n_classes, | ||
| dropout=DROPOUT, mlp_dropout=MLP_DROPOUT) | ||
| return model | ||
| def train_decoder(decoder, train, validation): | ||
| # training parameters | ||
| BATCH_SIZE = params["batch_size"] | ||
| EPOCHS = params["epochs"] | ||
| LOG_LEVEL = params["log_level"] | ||
| """ | ||
|
|
||
| def load_decoder(params, input_shape, n_classes): | ||
| """ | ||
| """ | ||
|
|
||
| decoder = load_decoder(train_set[0].shape[1:], n_classes) | ||
| decoder = DecoderModel( | ||
| input_shape, | ||
| params["head_size"], | ||
| params["num_heads"], | ||
| params["ff_dim"], | ||
| params["num_transformer_blocks"], | ||
| params["mlp_units"], | ||
| n_classes, | ||
| params["dropout"], | ||
| params["mlp_dropout"] | ||
| ) | ||
|
|
||
| decoder.compile( | ||
| optimizer=keras.optimizers.Adam(learning_rate=4e-4), | ||
| loss=["mse"], | ||
| loss=params["loss"], | ||
| metrics=params["metrics"] | ||
| ) | ||
|
|
||
| return decoder | ||
|
|
||
| def train_decoder(decoder, params, train, validation): | ||
| """ | ||
| """ | ||
|
|
||
| start = time.time() | ||
| decoder.fit( | ||
| x=train[1], | ||
| y=train[0], | ||
| validation_data=(validation[1], validation[0]), | ||
| batch_size=params["batch_size"], | ||
| epochs=params["epochs"], | ||
| verbose=params["log_level"] | ||
| ) | ||
| end = time.time() | ||
| print("Training time: ", end - start) | ||
|
|
||
| return decoder | ||
|
|
||
| def test_decoder(decoder: Model, test: List, metrics: dict): | ||
| """ | ||
| """ | ||
|
|
||
| test_eval = model.evaluate(test[1], test[0]) | ||
| test_eval = decoder.evaluate(test[1], test[0]) | ||
| if len(metrics.keys()) == 1: | ||
| metrics[metrics.keys()[0]] = test_eval | ||
| else: | ||
| for i, key in enumerate(metrics.keys()): | ||
| metrics[key] = test_eval[i] | ||
|
|
||
| test_predict = model.predict(test[1]) | ||
| test_predict = decoder.predict(test[1]) | ||
|
|
||
| return metrics, test_predict | ||
|
|
||
| def save_decoder(): | ||
| def save_decoder(decoder: Model): | ||
|
|
||
| return | ||
|
|
||
| # EOF |
File renamed without changes.