-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
236 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
global error radius_d dt time_array tex MaxRadExp; | ||
|
||
error = 0; | ||
|
||
% Reading experimental data | ||
% data2 = bubbleRadiuscell{i,j}'; | ||
% data1 = bubbleTimeVectorcell{i,j}'; | ||
|
||
|
||
% Find the maximum radius and the corresponding time of maximum occurence | ||
[MaxRadExp,I_MaxRadExp] = max(data2); | ||
|
||
|
||
tex = data1(I_MaxRadExp:end)-data1(I_MaxRadExp); | ||
rex = data2(I_MaxRadExp:end); | ||
|
||
radius_d = rex; | ||
dt = 0.00001; | ||
time_array = 0:dt:dt*(numel(tex)-1); | ||
|
||
%% CONSTANTS %% | ||
R_0 = MaxRadExp; | ||
% R_0 = 1.03813e-03; | ||
mu = 1e-3; | ||
n = 3; | ||
D = 1.76e-09; | ||
K_B = 6.737e09; | ||
alpha_M = .8544; | ||
R_v = 461.52; | ||
Na = 6.02e23; | ||
Rg = 8.314; | ||
T_infty = 293.15; | ||
P_infty = 1.01e05; | ||
Pinf = 1.01e05; | ||
T_0 = T_infty; | ||
TB_0 = T_infty; | ||
Vol_0 = 4/3*pi*R_0^3; | ||
P_0 = 50000; %%%%%%%%%%%%%%%%%%% | ||
P_water = 0.83775*55000; %%%%%%%%%%%%%%%%%%% | ||
n_t_0 = P_0*Vol_0*Na/(Rg*T_0); | ||
n_water_0 = P_water / P_0 * n_t_0; | ||
n_air_0 = n_t_0 - n_water_0; | ||
|
||
% Van der Waals Constants | ||
a_air_VdW = 0.1402; | ||
a_air_water_VdW = 0.278594; | ||
a_water_VdW = 0.5536; | ||
b_air_VdW = 3.753e-05; | ||
b_air_water_VdW = 3.38882e-05; | ||
b_water_VdW = 3.049e-05; | ||
|
||
% Initial Conditions | ||
R_0 = R_0; | ||
Rdot_0 = 0; | ||
mdot_0 = 0; | ||
n_t_0 = P_0*Vol_0*Na/(Rg*T_0); | ||
n_water_0 = P_water / P_0 * n_t_0; | ||
n_air_0 = n_t_0 - n_water_0; | ||
a_0_VdW = a_air_VdW*(n_air_0/n_t_0)^2 + 2*a_air_water_VdW*( n_air_0* n_water_0/n_t_0^2) + a_water_VdW*(n_water_0/n_t_0)^2; | ||
b_0_VdW = b_air_VdW*(n_air_0/n_t_0)^2 + 2*b_air_water_VdW*( n_air_0* n_water_0/n_t_0^2) + b_water_VdW*(n_water_0/n_t_0)^2; | ||
T_0 = T_infty; | ||
P_0 = 50000; | ||
Vol_0 = 4/3*pi*R_0^3; | ||
TB_0 = T_infty; | ||
|
||
% Initialization | ||
x0 = [n_air_0; n_water_0; n_t_0; a_0_VdW; b_0_VdW; T_0; Vol_0; TB_0; P_0; mdot_0; R_0; Rdot_0]; | ||
|
||
|
||
%% Main Section: Solving the Equations | ||
tic | ||
options = odeset('AbsTol',1e-3,'Stats','on');%'Reltol',1e-9, | ||
[t_ode, x] = ode45(@ODESolver_PID, [time_array(1),time_array(end)], x0, options); | ||
|
||
% Error calculation | ||
radius_desired_ode = interp1(tex,radius_d,t_ode); | ||
e = x(:,11) - radius_desired_ode; % Error radius | ||
toc | ||
|
||
figure(205) | ||
plot(t_ode,x(:,11),'-r','LineWidth',2.75) | ||
hold on | ||
h=plot(tex,rex,'o', 'MarkerSize',8,'Color',[0, 0.4470, 0.7410]),set(h, 'markerfacecolor', get(h, 'color')); | ||
title('Bubble Radius','fontsize',18,'FontName','Garamond','FontWeight','bold'); | ||
xlabel('time (sec)', 'fontsize',28,'FontName','Garamond','FontWeight','bold'); | ||
ylabel('Radius (m)', 'fontsize',28,'FontName','Garamond','FontWeight','bold'); | ||
legend('Predicted Radius (MODEL)', 'Desired Radius (EXP)') | ||
grid on | ||
set(gcf,'Color',[1 1 1]); | ||
set(gca,'fontsize',28,'FontName','Garamond','FontWeight','bold','Color','w'); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
function dx = ODESolver_PID(t, x) | ||
persistent radius_dPrev time_prev | ||
|
||
if isempty(radius_dPrev) | ||
radius_dPrev = 0; | ||
time_prev = 0; | ||
end | ||
|
||
global error radius_d tex MaxRadExp; | ||
|
||
dx = zeros(12,1); | ||
|
||
%Parameters: | ||
sigma = 0.072; % Surface tension, kg/s^2 | ||
mu = 1e-3; % Water kinematic viscosity, m^2/s | ||
rho_L = 1e3; % Water density, kg/m^3 | ||
k = 1.4; % Specific heat ratio | ||
c = 1500; | ||
R_0 = MaxRadExp; | ||
n = 3; | ||
D = 1.76e-09; | ||
K_B = 6.737e09; | ||
alpha_M = .8544; | ||
R_v = 461.52; | ||
Na = 6.02e23; | ||
Rg = 8.314; | ||
Rdot_0 = 0; | ||
mdot_0 = 0; | ||
T_infty = 293.15; | ||
P_infty = 1.01e05; | ||
Pinf = 1.01e05; | ||
T_0 = T_infty; | ||
TB_0 = T_infty; | ||
Vol_0 = 4/3*pi*R_0^3; | ||
P_0 = 50000; | ||
P_water = 0.83775*55000; | ||
n_t_0 = P_0*Vol_0*Na/(Rg*T_0); | ||
n_water_0 = P_water / P_0 * n_t_0; | ||
n_air_0 = n_t_0 - n_water_0; | ||
% Van der Waals Constants | ||
a_air_VdW = 0.1402; | ||
a_air_water_VdW = 0.278594; | ||
a_water_VdW = 0.5536; | ||
b_air_VdW = 3.753e-05; | ||
b_air_water_VdW = 3.38882e-05; | ||
b_water_VdW = 3.049e-05; | ||
a_0_VdW = a_air_VdW*(n_air_0/n_t_0)^2 + 2*a_air_water_VdW*( n_air_0* n_water_0/n_t_0^2) + a_water_VdW*(n_water_0/n_t_0)^2; | ||
b_0_VdW = b_air_VdW*(n_air_0/n_t_0)^2 + 2*b_air_water_VdW*( n_air_0* n_water_0/n_t_0^2) + b_water_VdW*(n_water_0/n_t_0)^2; | ||
|
||
if (x(6)<258.15) | ||
P_v = 180.547; | ||
elseif (x(6)>258.15 && x(6)<647.3) | ||
P_v = 133.322*exp(18.3036-3816.44/(x(6)-46.13)); | ||
else | ||
P_v = 2.075e07; | ||
end | ||
P_v_infty = 133.322*exp(18.3036-3816.44/(T_infty-46.13)); | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%% PID IMPLEMENTATION %%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% radius_d first derivative | ||
radius_desired_current = interp1(tex,radius_d,t); | ||
if t==time_prev | ||
radius_dDot = 0; | ||
else | ||
radius_dDot = ( radius_desired_current - radius_dPrev ) / (t-time_prev); | ||
end | ||
radius_dPrev = radius_desired_current; | ||
|
||
% PID tuning | ||
Kp = 6500000; | ||
Kd = 0;%25;%20; | ||
Ki = 0;%250000; | ||
|
||
ind = find(tex<t & tex>time_prev); | ||
if ~isempty(ind) | ||
|
||
% u: feedback signal | ||
u = Kp*(radius_desired_current - x(11)) + Kd*( radius_dDot - x(12)) + Ki*error; | ||
error = error + (radius_desired_current - x(1))*(t-time_prev); | ||
else | ||
u = (Kp*(radius_desired_current - x(11)) + Kd*( radius_dDot - x(12)) + Ki*error)/2.5; | ||
error = error + (radius_desired_current - x(1))*(t-time_prev); | ||
end | ||
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%% Equations to solve %%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
Y = x(5)/(Na*x(7)/x(3)) + 0.625*(x(5)/(Na*x(7)/x(3)))^2 + 0.2869*(x(5)/(Na*x(7)/x(3)))^3+0.115*(x(5)/(Na*x(7)/x(3)))^4; | ||
kappa0_water = 9.98e-05 * x(8) - 0.0119; | ||
kappa0_air = 5.39e-05 * x(8) + 0.0108; | ||
kappa0_mix = 0.5*(x(2)/x(3)*kappa0_water + x(1)/x(3)*kappa0_air + 1/(x(2)/(x(3)*kappa0_water)+x(1)/(x(3)*kappa0_air))); | ||
kappa = x(5)/(Na*x(7)/x(3))*(1/Y+1.2+0.755*Y)*kappa0_mix; | ||
|
||
if (0.1 * P_infty - x(1) / x(3) * x(9) <0) | ||
Z = x(8); | ||
else | ||
Z = T_0; | ||
end | ||
% keyboard; | ||
G = -1/(2*1.138e-23) * sqrt(pi/1.38e-23) * 1.173 * kappa * 4e-19 / n; | ||
lambda = x(7) / (sqrt(2)* 0.4e-18 * x(3)); | ||
|
||
E_water_infty = 1.04334e-20 + 6.27210e-23 * (T_infty-250); | ||
E_water_T_B = 1.04334e-20 + 6.27210e-23 * (x(8)-250); | ||
E_air_Z = 8.64814e-21 + 4.40808e-23 * (Z-250); | ||
E_air_T = 8.64814e-21 + 4.40808e-23 * (x(6)-250); | ||
E_water_T = 1.04334e-20 + 6.27210e-23 * (x(6)-250); | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ODEs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
|
||
dx(1) = 4*pi*x(11)*D*1000*rho_L*Na/(18*K_B)*(0.1*P_infty-x(1)/x(3)*x(9)); | ||
|
||
GammaFunc = x(10)*x(3)/(x(2)*x(9))*sqrt(R_v*x(8)/2); | ||
funGamma = @(ttt) exp(-ttt.^2); | ||
IntTerm = integral(@(ttt)funGamma(ttt),0, GammaFunc); | ||
Gamma = exp(-GammaFunc^2)-sqrt(pi)* GammaFunc*(1-2/sqrt(pi)*IntTerm); | ||
|
||
dx(2) = 4*pi*x(11)^2*1000*Na/18*alpha_M/sqrt(2*pi*R_v)*(P_v_infty/sqrt(T_infty)- Gamma*x(2)*x(9)/(x(3)*sqrt(x(8)))); | ||
dx(3) = dx(1)+ dx(2); | ||
|
||
M = 0.001/(Na*x(3))*(18*x(2)+28.97*x(1)); | ||
dM = 0.001/(Na*x(3)^2)*(18*(x(3)*dx(2)-x(2)*dx(3))+28.97*(x(3)*dx(1) -x(1)*dx(3))); | ||
X = Na*x(7)/x(3); | ||
dX = 4*pi/3*Na/x(3)^2*(3*x(11)^2*x(12)*x(3)-x(11)^3*dx(3)); | ||
|
||
dx(4) = 2*a_air_VdW*x(1)/x(3)^3*(x(3)*dx(1)-x(1)*dx(3)) + 2*a_air_water_VdW*x(2)/x(3)^3*(x(3)*dx(1)-x(1)*dx(3)) + 2*a_air_water_VdW*x(1)/x(3)^3*(x(3)*dx(2)-x(2)*dx(3))+ 2*a_water_VdW*x(2)/x(3)^3*(x(3)*dx(2)-x(2)*dx(3)); | ||
dx(5) = 2/x(3)^3*((b_air_VdW*x(1)+b_air_water_VdW*x(2))*(x(3)*dx(1)-x(1)*dx(3))+( b_water_VdW*x(2)+b_air_water_VdW*x(1))*(x(3)*dx(2)-x(2)*dx(3))); | ||
dx(6) = 1/(4.40808e-23*x(1)+6.2721e-23*x(2))*(-x(9)*4*pi*x(11)^2*x(12)+kappa*4*pi*x(11)^2*(x(8)-x(6))/(n*lambda)+4*pi*x(11)^2*1000/18*Na*alpha_M/(sqrt(2*pi*R_v))*(P_v_infty/sqrt(T_infty)*E_water_infty- Gamma*x(2)*x(9)/(x(3)*sqrt(x(8)))*E_water_T_B)+4*pi*x(11)*D*1000*rho_L*Na/(18*K_B)*(0.1*P_infty-x(1)/x(3)*x(9))*E_air_Z-x(3)^2*x(4)/Na^2/x(7)^2*4*pi*x(11)^2*x(12)+1/(Na^2*x(7))*(2*x(3)*dx(3)*x(4)+x(3)^2*dx(4))-dx(1)*E_air_T-dx(2)*E_water_T); | ||
dx(7) = 4*pi*x(11)^2*x(12); | ||
dx(8) = G*(-dx(6)* sqrt(M/x(8))+(x(8)-x(6))/(2*x(8))* sqrt(x(8)/M)*dM)/(1-G*sqrt(M/x(8))+M/(2*x(8)^2)*(x(8)-x(6))*sqrt(x(8)/M)); | ||
dx(9) = (Rg*dx(6)-(x(9)+x(4)/X^2)*(dX-dx(5)))/(X-x(5))+2*x(4)/X^3*dX-dx(4)/X^2; | ||
dx(10) = -alpha_M/sqrt(2*pi*R_v)*Gamma*(x(9)/sqrt(x(8))/x(3)^2*(x(3)*dx(2)-x(2)*dx(3))+x(2)/x(3)*(dx(9)/sqrt(x(8))-0.5*x(9)/x(8)^1.5*dx(8))); | ||
|
||
Rho_g = 0.001/(Na*x(7))*(18*x(2)+28.97*x(1)); | ||
dRho_g = 0.001/(Na*x(7)^2)*(x(7)*(18*dx(2)+28.97*dx(1))-dx(7)*(18*x(2)+28.97*x(1))); | ||
|
||
|
||
dx(11) = x(12); | ||
|
||
% dx(12) = ((1+x(12)/c)/rho_L*(x(9)-2*sigma/x(11)-4*mu/x(11)*(x(12)-x(10)/rho_L)-x(10)^2*(1/rho_L-1/Rho_g)-Pinf)+dx(10)*x(11)/rho_L*(1-x(12)/c+x(10)/(rho_L*c))+ x(10)/rho_L*(x(12)+ x(10)/(2*rho_L)+x(12)* x(10)/(2*rho_L*c))-1.5*x(12)^2*(1-x(12)/(3*c)+2* x(10)/(3*rho_L*c))+x(11)/(rho_L*c)*(dx(9)+2*sigma*x(12)/x(11)^2+4*mu*(x(12)^2/x(11)^2+(x(11)*dx(10)-x(12)* x(10))/(rho_L*x(11)^2))-2*x(10)*dx(10)*(1/rho_L-1/Rho_g)-x(10)^2/Rho_g^2*dRho_g))/(x(11)*(1-x(12)/c+x(10)/(c*rho_L))+4*mu/(c*rho_L)); | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%% ADDING FEEDBACK SIGNAL %%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
dx(12) = (u+(1+x(12)/c)/rho_L*(x(9)-2*sigma/x(11)-4*mu/x(11)*(x(12)-x(10)/rho_L)-x(10)^2*(1/rho_L-1/Rho_g)-Pinf)+dx(10)*x(11)/rho_L*(1-x(12)/c+x(10)/(rho_L*c))+ x(10)/rho_L*(x(12)+ x(10)/(2*rho_L)+x(12)* x(10)/(2*rho_L*c))-1.5*x(12)^2*(1-x(12)/(3*c)+2* x(10)/(3*rho_L*c))+x(11)/(rho_L*c)*(dx(9)+2*sigma*x(12)/x(11)^2+4*mu*(x(12)^2/x(11)^2+(x(11)*dx(10)-x(12)* x(10))/(rho_L*x(11)^2))-2*x(10)*dx(10)*(1/rho_L-1/Rho_g)-x(10)^2/Rho_g^2*dRho_g))/(x(11)*(1-x(12)/c+x(10)/(c*rho_L))+4*mu/(c*rho_L)); | ||
|
||
time_prev = t; | ||
end |