Skip to content

Commit

Permalink
use relative path to script
Browse files Browse the repository at this point in the history
  • Loading branch information
Han Zhu committed Sep 24, 2024
1 parent 5949b7d commit d897697
Show file tree
Hide file tree
Showing 3 changed files with 253 additions and 4 deletions.
13 changes: 12 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -161,4 +161,15 @@ cython_debug/

CryoREAD_Predict_Result/
output_test/
examples/
examples/
Tutorial5.0/
test_outdir/
test_cryoread_26363/
job019_run_it050_class001_test/
job052_run_it100_class003/
22647_test_gmm/
26363_test_gmm/
CryoREAD/test_cryoread_22647/
CryoREAD/test_cryoread_26363/
CryoREAD/job019_run_it050_class001/
CryoREAD/job052_run_it100_class003/
239 changes: 239 additions & 0 deletions contour.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,239 @@
from pathlib import Path

import mrcfile
import numpy as np
from sklearn import mixture
import os

from skimage.morphology import ball, opening
from skimage.filters import rank
from skimage.util import img_as_ubyte
from scipy.ndimage import zoom

import matplotlib.pyplot as plt

# change to relative path to this file
# CRYOREAD_PATH = "./CryoREAD/main.py"
CURR_SCIPT_PATH = Path(__file__).absolute().parent
CRYOREAD_PATH = CURR_SCIPT_PATH / "CryoREAD" / "main.py"


def save_mrc(orig_map_path, data, out_path):
with mrcfile.open(orig_map_path, permissive=True) as orig_map:
with mrcfile.new(out_path, data=data.astype(np.float32), overwrite=True) as mrc:
mrc.voxel_size = orig_map.voxel_size
mrc.header.nxstart = orig_map.header.nxstart
mrc.header.nystart = orig_map.header.nystart
mrc.header.nzstart = orig_map.header.nzstart
mrc.header.origin = orig_map.header.origin
mrc.header.mapc = orig_map.header.mapc
mrc.header.mapr = orig_map.header.mapr
mrc.header.maps = orig_map.header.maps
mrc.update_header_stats()
mrc.update_header_from_data()
mrc.flush()


def gen_features(map_array):
non_zero_data = map_array[np.nonzero(map_array)]
data_normalized = (map_array - map_array.min()) * 2 / (map_array.max() - map_array.min()) - 1
local_grad_norm = rank.gradient(img_as_ubyte(data_normalized), ball(3))
local_grad_norm = local_grad_norm[np.nonzero(map_array)]
local_grad_norm = (local_grad_norm - local_grad_norm.min()) / (local_grad_norm.max() - local_grad_norm.min())
non_zero_data_normalized = (non_zero_data - non_zero_data.min()) / (non_zero_data.max() - non_zero_data.min())

# stack the flattened data and gradient
local_grad_norm = np.reshape(local_grad_norm, (-1, 1))
non_zero_data_normalized = np.reshape(non_zero_data_normalized, (-1, 1))
features = np.hstack((non_zero_data_normalized, local_grad_norm))

return features


def gmm_mask(input_map_path, output_folder, num_components=2, use_grad=False, n_init=1, plot_all=False):
print("input_map_path", input_map_path)
print("output_folder", output_folder)

os.makedirs(output_folder, exist_ok=True)

print("Opening map file")

with mrcfile.open(input_map_path, permissive=True) as mrc:
map_data = mrc.data.copy()

print("Input map shape:", map_data.shape)

non_zero_data = map_data[np.nonzero(map_data)]

data_normalized = (map_data - map_data.min()) * 2 / (map_data.max() - map_data.min()) - 1

print("Non-zero data shape", non_zero_data.shape)

# Zooming to handling large maps
if len(non_zero_data) >= 5e6:
print("Map is too large, resizing...")

# resample
zoom_factor = (2e6 / len(non_zero_data)) ** (1 / 3)
print("Resample with zoom factor:", zoom_factor)

map_data_zoomed = zoom(map_data, zoom_factor, order=3, mode="grid-constant", grid_mode=False)
data_normalized_zoomed = (map_data_zoomed - map_data_zoomed.min()) * 2 / (map_data_zoomed.max() - map_data_zoomed.min()) - 1
non_zero_data_zoomed = map_data_zoomed[np.nonzero(map_data_zoomed)]

print("Shape after resample:", data_normalized_zoomed.shape)

print("Calculating gradient")
local_grad_norm_zoomed = rank.gradient(img_as_ubyte(data_normalized_zoomed), ball(3))
local_grad_norm_zoomed = local_grad_norm_zoomed[np.nonzero(map_data_zoomed)]
local_grad_norm_zoomed = (local_grad_norm_zoomed - local_grad_norm_zoomed.min()) / (
local_grad_norm_zoomed.max() - local_grad_norm_zoomed.min()
)

non_zero_data_normalized_zoomed = (non_zero_data_zoomed - non_zero_data_zoomed.min()) / (
non_zero_data_zoomed.max() - non_zero_data_zoomed.min()
)

local_grad_norm_zoomed = np.reshape(local_grad_norm_zoomed, (-1, 1))
non_zero_data_normalized_zoomed = np.reshape(non_zero_data_normalized_zoomed, (-1, 1))
# print(non_zero_data_normalized_zoomed.shape, local_grad_norm_zoomed.shape)
data_zoomed = np.hstack((non_zero_data_normalized_zoomed, local_grad_norm_zoomed))

# calculate guassian gradient norm
local_grad_norm = rank.gradient(img_as_ubyte(data_normalized), ball(3))
local_grad_norm = local_grad_norm[np.nonzero(map_data)]

# min-max normalization
local_grad_norm = (local_grad_norm - local_grad_norm.min()) / (local_grad_norm.max() - local_grad_norm.min())
non_zero_data_normalized = (non_zero_data - non_zero_data.min()) / (non_zero_data.max() - non_zero_data.min())

# stack the flattened data and gradient
local_grad_norm = np.reshape(local_grad_norm, (-1, 1))
non_zero_data_normalized = np.reshape(non_zero_data_normalized, (-1, 1))
data = np.hstack((non_zero_data_normalized, local_grad_norm))

print("Fitting GMM")

# fit the GMM
g = mixture.BayesianGaussianMixture(n_components=num_components, max_iter=500, n_init=n_init, tol=1e-2)

if use_grad:
data_to_fit = data_zoomed if len(non_zero_data) >= 5e6 else data
else:
data_to_fit = non_zero_data_normalized_zoomed if len(non_zero_data) >= 5e6 else non_zero_data_normalized
print("Fitting feature shape:", data_to_fit.shape)
g.fit(data_to_fit)
print("Predicting, feature shape:", data.shape)
preds = g.predict(data)

if plot_all:
fig, ax = plt.subplots(1, 1, figsize=(10, 3))
all_datas = []
for pred in np.unique(preds):
mask = np.zeros_like(map_data)
mask[np.nonzero(map_data)] = preds == pred
masked_map_data = map_data * mask
new_data_non_zero = masked_map_data[np.nonzero(masked_map_data)]
all_datas.append(new_data_non_zero.flatten())
mean = np.mean(new_data_non_zero)
ax.axvline(mean, linestyle="--", color="k", label=f"Mean_{pred}")
labels = [f"Component {i}" for i in range(num_components)]
ax.hist(all_datas, alpha=0.5, bins=256, density=True, log=True, label=labels, stacked=True)
ax.set_yscale("log")
ax.legend(loc="upper right")
ax.set_xlabel("Map Density Value")
ax.set_ylabel("Density (log scale)")
ax.set_title("Stacked Histogram by Component")
fig.tight_layout()
# print("Saving figure to", os.path.join(output_folder, "hist_by_component.png"))
fig.savefig(os.path.join(output_folder, Path(input_map_path).stem + "_hist_by_components.png"))

# choose ind that is closest to 0, and ind that has the highest mean
ind_noise = np.argmin(np.abs(g.means_[:, 0].flatten()))
# ind_max = np.argmax(g.covariances_[:, 0, 0].flatten())

print("Means: ", g.means_.shape, g.means_[:, 0], g.means_[:, 1])

# print("Variances: ", g.covariances_.shape, g.covariances_[ind_noise, 0, 0])
# print("Std: ", np.sqrt(g.covariances_[ind_noise, 0, 0]))

# generate a mask to keep only the component without the noise
mask = np.zeros_like(map_data)
mask[np.nonzero(map_data)] = preds != ind_noise

noise_comp = map_data[np.nonzero(map_data)][preds == ind_noise]
revised_contour = np.max(noise_comp)

prot_comp = map_data[np.nonzero(map_data)][preds != ind_noise]

print("Revised contour:", revised_contour)
print("Remaining mask region size in voxels:", np.count_nonzero(mask))

# use opening to remove small holes
mask = opening(mask.astype(bool), ball(3))
masked_map_data = map_data * mask
new_data_non_zero = masked_map_data[np.nonzero(masked_map_data)]

# calcualte new gradient norm
new_fit_data = gen_features(masked_map_data)
print("Fitting feature shape:", new_fit_data.shape)

# fit the GMM again on the new data
g2 = mixture.BayesianGaussianMixture(n_components=2, max_iter=500, n_init=n_init, tol=1e-2)
g2.fit(new_fit_data)

# predict the new data
new_preds = g2.predict(new_fit_data)
# ind_noise_second = np.argmin(np.abs(g2.means_[:, 0].flatten()))
ind_noise_second = np.argmin(g2.covariances_[:, 0, 0].flatten())
noise_comp_2 = masked_map_data[np.nonzero(masked_map_data)][new_preds == ind_noise_second]
prot_comp_2 = masked_map_data[np.nonzero(masked_map_data)][new_preds != ind_noise_second]
# revised_contour_2 = np.median(prot_comp_2)
revised_contour_2 = np.max(noise_comp_2)

print("Revised contour (high):", revised_contour_2)

# save the new data
save_mrc(input_map_path, masked_map_data, os.path.join(output_folder, Path(input_map_path).stem + "_mask.mrc"))

mask_percent = np.count_nonzero(masked_map_data > 1e-8) / np.count_nonzero(map_data > 1e-8)

# plot the histogram
fig, ax = plt.subplots(figsize=(10, 2))
ax.hist(non_zero_data.flatten(), alpha=0.5, bins=256, density=False, log=True, label="Original")
ax.hist(new_data_non_zero.flatten(), alpha=0.5, bins=256, density=False, log=True, label="Masked")
ax.axvline(revised_contour, label="Revised Contour")
ax.axvline(revised_contour_2, label="Revised Contour (High)", linestyle="dashed")
ax.legend()
plt.title(input_map_path)
plt.savefig(os.path.join(output_folder, Path(input_map_path).stem + "_hist_overall.png"))

out_txt = os.path.join(output_folder, Path(input_map_path).stem + "_revised_contour.txt")

with open(out_txt, "w") as f:
f.write(f"Revised contour: {revised_contour}\n")
f.write(f"Revised contour (high): {revised_contour_2}\n")
f.write(f"Masked percentage: {mask_percent}\n")

# return revised contour level and mask percent
return revised_contour, mask_percent


if __name__ == "__main__":
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input_map_path", type=str, default=None)
parser.add_argument("-o", "--output_folder", type=str, default=None)
parser.add_argument("-p", "--plot_all", action="store_true")
parser.add_argument("-n", "--num_components", type=int, default=2)
parser.add_argument("-r", "--resolution", type=float, default=None)
args = parser.parse_args()
revised_contour, mask_percent = gmm_mask(
input_map_path=args.input_map_path,
output_folder=args.output_folder,
num_components=args.num_components,
use_grad=True,
n_init=3,
plot_all=args.plot_all,
)
5 changes: 2 additions & 3 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,8 @@

logger.info("Input job folder path: ", args.F)

CRYOREAD_PATH = "./CryoREAD/main.py"

# mrc_files = glob(args.F + "/*.mrc")
CURR_SCIPT_PATH = Path(__file__).absolute().parent
CRYOREAD_PATH = CURR_SCIPT_PATH / "CryoREAD" / "main.py"

mrc_files = args.F
# check if files exists
Expand Down

0 comments on commit d897697

Please sign in to comment.