-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
257 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
% SIRSMC.m | ||
% converted from diffusionmat on 1/4/16 | ||
% Susecpt-Infect-Suscept plus an innoculation of highest-degree node | ||
% Monte Carlo to get good statistics | ||
|
||
clear | ||
close all | ||
format compact | ||
|
||
T1 = 100; | ||
T2 = 300; | ||
|
||
showfig = 0; | ||
|
||
Innoc = 1; % Turn innoculation on | ||
|
||
Nensemble = 100; | ||
for eloop = 1:Nensemble | ||
eloop | ||
|
||
% beta is infection rate | ||
% mu is recovery rate | ||
|
||
%N = 50; m = 2; beta = 0.2; mu = 0.6; node = makeSF(N,m); | ||
%N = 50; m = 2; beta = 0.2; mu = 0.4; p = 0.1; node = makeSW(N,m,p); | ||
N = 50; p = 0.06; beta = 0.2; mu = 0.4; node = makeER(N,p); | ||
|
||
[N,e,avgdegree,maxdegree,mindegree,numclus,meanclus,Lmax,L2,LmaxL2] = clusterstats(node); | ||
|
||
disp(' ') | ||
displine('Number of nodes = ',N) | ||
disp(strcat('Number of edges = ',num2str(e))) | ||
disp(strcat('Mean degree = ',num2str(avgdegree))) | ||
displine('Maximum degree = ',maxdegree) | ||
disp(strcat('Number of clusters = ',num2str(numclus))) | ||
disp(strcat('mean cluster coefficient = ',num2str(meanclus))) | ||
disp(' ') | ||
disp(strcat('Lmax = ',num2str(Lmax))) | ||
disp(strcat('L2 = ',num2str(L2))) | ||
disp(strcat('Lmax/L2 = ',num2str(LmaxL2))) | ||
disp(' ') | ||
disp(strcat('fac =',num2str(mu/avgdegree/beta))) | ||
disp(' ') | ||
|
||
[A,degree,Lap] = adjacency(node); | ||
|
||
[V,D] = eig(Lap); | ||
|
||
for loop = 1:N | ||
eigval(loop) = D(loop,loop); | ||
end | ||
|
||
figure(1) | ||
plot(eigval) | ||
title('Eigenvalues') | ||
|
||
% initial values | ||
a = zeros(N,1); | ||
[Y,I] = max(degree); | ||
a(I) = 1; % Infect the high-degree node | ||
|
||
if showfig == 1 | ||
fh2 = figure(2); | ||
drawnet(node) | ||
end | ||
|
||
% The discrete-time approach | ||
|
||
c0 = a; | ||
dt = 1; | ||
|
||
R = eye(N,N); | ||
Ct = zeros(1,N); | ||
for nloop = 1:N | ||
deg(nloop) = node(nloop).numlink; | ||
end | ||
|
||
tic | ||
c = c0; | ||
fh3 = figure(3); | ||
eps = 1e-6; | ||
Con = zeros(T2,N); | ||
in = zeros(1,T2); | ||
flag = 0; timeloop = 0; | ||
while (flag == 0)&&(timeloop <= T1) | ||
timeloop = timeloop + 1; | ||
|
||
%M = eye(N,N) - beta*Lap*dt.*randbin2(N,N,1-beta).*(ones(N,N)-eye(N,N)); | ||
M = eye(N,N) + beta*A*dt.*randbin2(N,N,1-beta).*(ones(N,N)-eye(N,N)); | ||
|
||
ctmp = M*c; | ||
|
||
ctmp2 = ceil(ctmp); | ||
|
||
|
||
c = maskbilevel(ctmp2,0,1,0,1); | ||
|
||
|
||
ctmp3 = R*c; | ||
ctmp4 = floor(ctmp3); | ||
c = maskbilevel(ctmp4,0,1,0,1); | ||
|
||
|
||
Con(timeloop,:) = c'; | ||
|
||
Pop = sum(Con(timeloop,:)); | ||
if Pop == 0 | ||
flag = 1; | ||
end | ||
|
||
|
||
for nodeloop = 1:N | ||
node(nodeloop).value = c(nodeloop); | ||
Rtmp(nodeloop,nodeloop) = c(nodeloop); | ||
end | ||
|
||
if showfig == 1 | ||
drawnet(node,2) | ||
pause(0.01) | ||
end | ||
|
||
for nloop = 1:N | ||
if node(nloop).value == 1 | ||
Ct(nloop) = Ct(nloop) + 1/T1; | ||
end | ||
end | ||
|
||
R = eye(N,N) - (Rtmp.*mu*dt.*eye(N,N).*randbin2(N,N,1-mu)); | ||
|
||
% if timeloop > T1-2 | ||
% keyboard | ||
% end | ||
|
||
end | ||
|
||
if Innoc == 1 | ||
% Innocluate | ||
% Remove the highest-degree node | ||
displine('avgdegree = ',avgdegree) | ||
disp(strcat('fac =',num2str(mu/avgdegree/beta))) | ||
node = subnode(I,node); | ||
%snode = removenode(I,node); | ||
[A,degree,Lap] = adjacency(node); | ||
|
||
%keyboard | ||
|
||
[N,e,avgdegree,maxdegree,mindegree,numclus,meanclus,Lmax,L2,LmaxL2] = clusterstats(node); | ||
displine('avgdegree = ',avgdegree) | ||
disp(strcat('fac =',num2str(mu/avgdegree/beta))) | ||
end | ||
|
||
|
||
while (flag == 0)&&(timeloop <= T2) | ||
timeloop = timeloop + 1; | ||
|
||
%M = eye(N,N) - beta*Lap*dt.*randbin2(N,N,1-beta).*(ones(N,N)-eye(N,N)); | ||
M = eye(N,N) + beta*A*dt.*randbin2(N,N,1-beta).*(ones(N,N)-eye(N,N)); | ||
|
||
ctmp = M*c; | ||
|
||
ctmp2 = ceil(ctmp); | ||
c = maskbilevel(ctmp2,0,1.01,0,1); | ||
|
||
ctmp3 = R*c; | ||
ctmp4 = floor(ctmp3); | ||
c = maskbilevel(ctmp4,-0.01,1.01,0,1); | ||
|
||
|
||
Con(timeloop,:) = c'; | ||
Pop = sum(Con(timeloop,:)); | ||
if Pop == 0 | ||
flag = 1; | ||
end | ||
|
||
|
||
for nodeloop = 1:N | ||
node(nodeloop).value = c(nodeloop); | ||
Rtmp(nodeloop,nodeloop) = c(nodeloop); | ||
end | ||
|
||
if showfig == 1 | ||
drawnet(node,2) | ||
pause(0.01) | ||
end | ||
|
||
R = eye(N,N) - (Rtmp.*mu*dt.*eye(N,N).*randbin2(N,N,1-mu)); | ||
|
||
% if timeloop > T1-2 | ||
% keyboard | ||
% end | ||
|
||
end | ||
toc | ||
|
||
|
||
|
||
x = 0:T2-1; | ||
h = colormap(jet); | ||
figure(4) | ||
for tloop = 1:T2 | ||
Ssum = 0; | ||
for nodeloop = 1:N | ||
Ssum = Ssum + Con(tloop,nodeloop); | ||
end | ||
In(tloop) = Ssum; | ||
end | ||
|
||
figure(4) | ||
plot(In) | ||
title('Infected') | ||
|
||
|
||
mn1 = mean(In(10:T1)); | ||
mn2 = mean(In(T1+10:T2)); | ||
|
||
displine('del pop = ',mn2-mn1) | ||
displine('rel del pop = ',(mn2-mn1)/mn1) | ||
|
||
figure(5) | ||
plot(deg,Ct,'o') | ||
xlabel('degree') | ||
ylabel('avg infection') | ||
|
||
|
||
% else % non-Innoc case | ||
% | ||
% | ||
% x = 0:T1-1; | ||
% h = colormap(jet); | ||
% figure(4) | ||
% for tloop = 1:T1 | ||
% Ssum = 0; | ||
% for nodeloop = 1:N | ||
% Ssum = Ssum + Con(tloop,nodeloop); | ||
% end | ||
% In(tloop) = Ssum; | ||
% end | ||
% | ||
% figure(4) | ||
% plot(In) | ||
% title('Infected') | ||
% | ||
% end | ||
|
||
Infection(eloop,:) = In; | ||
|
||
end % end eloop | ||
|
||
figure(6) | ||
imagesc(Infection) | ||
|
||
Y = mean(Infection); | ||
|
||
figure(7) | ||
plot(Y) | ||
|
||
|