-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Testing commit
- Loading branch information
Showing
2 changed files
with
296 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,296 @@ | ||
% Quasispecies and Replicator-Mutator simulation with adjacency matrix. | ||
|
||
function node = quasiSpecAdj | ||
|
||
%close all | ||
h = colormap(lines); | ||
|
||
randpop = 1; % 0) = spike population; 1) = random population | ||
mutype = 2; % 0) = Hamming; 1) = rand; 2) = network distance | ||
fitype = 5; % 0) = Hamming; 1) = 2-peak; 2) = rand+gauss; 3) = freq-dep; 4) = Network distance 5) = degree | ||
|
||
B = 7; | ||
N = 2^B; % size of mutation space (128) | ||
lam = 1; % Hamming fitness only | ||
gamma = 1; % freq-dep fitness (payoff matrix only) | ||
relran = 0.025; % relative random contrib to fitness | ||
time_expand = 50; | ||
|
||
ep = 0.05; % average mutation rate: 0.1 to 0.01 typical (0.4835) (0.0290) | ||
|
||
% Set up adjacency matrix | ||
|
||
node = makeER(N,0.05); | ||
%node = makeSW(N,3,0.2); | ||
%node = makeSF(N,3); | ||
%node = makeglobal(N); | ||
|
||
[N,e,avgdegree,maxdegree,mindegree,numclus,meanclus,Lmax,L2,LmaxL2,meandistance,diam] = clusterstats(node); | ||
deg = degreedist(node); | ||
|
||
disp(' ') | ||
displine('avg degree = ',avgdegree') | ||
displine('number of clusters =', numclus) | ||
displine('diameter = ',diam) | ||
disp(' ') | ||
|
||
figure(1) | ||
drawnet(node) | ||
%DrawNetC(node) | ||
|
||
[A,degree,Lap] = adjacency(node); | ||
dist = node2distance(node,100); | ||
figure(2) | ||
imagesc(dist) | ||
colormap(jet) | ||
colorbar | ||
caxis([0 10]) | ||
title('Distance Matrix') | ||
|
||
%keyboard | ||
|
||
%%%%% Set original population | ||
if randpop == 1 | ||
%rng(0); | ||
x0temp = rand(1,N); % Initial population | ||
sx = sum(x0temp); | ||
x0 = x0temp/sx; | ||
else | ||
x0 = zeros(1,N); | ||
x0(1) = 0.667; x0(2) = 0.333; | ||
end | ||
|
||
Pop0 = sum(x0); | ||
|
||
|
||
%%%%%% Set Hamming distance | ||
for yloop = 1:N | ||
for xloop = 1:N | ||
H(yloop,xloop) = hamming(yloop-1,xloop-1); | ||
end | ||
end | ||
|
||
|
||
|
||
%%%%%%% Set Mutation matrix | ||
if mutype == 0 % Hamming | ||
Qtemp = 1./(1+H/ep); %Mutation matrix on Hamming | ||
%Qtemp = exp(-H/(ep*50)); | ||
Qsum = sum(Qtemp,2); | ||
|
||
% Normalize mutation among species | ||
for yloop = 1:N | ||
for xloop = 1:N | ||
Q(yloop,xloop) = Qtemp(yloop,xloop)/Qsum(xloop); | ||
end | ||
end | ||
|
||
end | ||
if mutype == 1 % Random mutation | ||
%rng(0); | ||
S = stochasticmatrix(N); | ||
Stemp = S - diag(diag(S)); | ||
Qtemp = ep*Stemp; | ||
sm = sum(Qtemp,2)'; | ||
Q = Qtemp + diag(ones(1,N) - sm); | ||
end | ||
if mutype == 2 % Network distance | ||
Qtemp = 1./(1+dist/ep); %Mutation matrix on Hamming | ||
Qsum = sum(Qtemp,2); | ||
|
||
% Normalize mutation among species | ||
for yloop = 1:N | ||
for xloop = 1:N | ||
Q(yloop,xloop) = Qtemp(yloop,xloop)/Qsum(xloop); | ||
end | ||
end | ||
|
||
end | ||
|
||
%keyboard | ||
|
||
|
||
%%%%%%% Set fitness landscape | ||
|
||
if fitype == 0 % Hamming | ||
x = 1:N; | ||
alpha = 84; | ||
ftemp = exp(-lam*H(alpha,:)); % Fitness landscape | ||
sf = sum(ftemp); | ||
f = ftemp/sf; | ||
end | ||
if fitype == 1 % double peak and rand | ||
%rng(1); | ||
f = rand(1,N); | ||
x = 1:N; | ||
delg = 20; | ||
sig1 = 1; | ||
sig2 = 4; | ||
g1 = gaussprob(x,(N/2 - delg),sig1); | ||
g2 = 3*gaussprob(x,(N/2 + delg),sig2); | ||
ftemp = relran*f + g1 + g2; | ||
f = ftemp/sum(ftemp); | ||
end | ||
if fitype == 2 % rand + Gauss | ||
%rng(0); | ||
f = rand(1,N); | ||
x = 1:N; | ||
ftemp = relran*f + gauss((x-N/2)/2); % Fitness landscape | ||
f = ftemp/sum(ftemp); | ||
end | ||
if fitype == 3 % frequency-dependent Hamming | ||
avgdis = mean(mean(H)); | ||
%payoff = exp(-gamma*(H - avgdis)); % payoff matrix | ||
%payoff = H.^2; | ||
%payoff = ones(size(H)); | ||
payoff = exp(-gamma*H); | ||
end | ||
if fitype == 4 % Network Distance from node 64 | ||
x = 1:N; | ||
alpha = 64; | ||
ftemp = exp(-lam*dist(alpha,:)); % Fitness landscape | ||
sf = sum(ftemp); | ||
f = ftemp/sf; | ||
end | ||
if fitype == 5 | ||
ftemp = exp(-lam*deg); | ||
sf = sum(ftemp); | ||
f = ftemp/sf; | ||
end | ||
|
||
%keyboard | ||
|
||
% Run time evolution | ||
tspan = [0 1000]; | ||
[t,x] = ode45(@quasispec,tspan,x0); | ||
|
||
Pop0 | ||
[sz,dum] = size(t); | ||
Popend = sum(x(sz,:)) | ||
|
||
phistar = sum(f.*x(sz,:)) % final average fitness | ||
|
||
|
||
figure(3) | ||
plot(f,'-') | ||
hold on | ||
figure(3) | ||
plot(x(sz,:),'r') | ||
hold off | ||
legend('fitness','population') | ||
|
||
figure(4) | ||
loglog(f,x(sz,:),'or') | ||
xlabel('Fitness') | ||
ylabel('Population') | ||
|
||
%keyboard | ||
|
||
|
||
|
||
% figure(4) | ||
% for loop = 1:N | ||
% semilogx(t,x(:,loop),'Color',h(round(loop*64/N),:),'LineWidth',1.25) | ||
% hold on | ||
% end | ||
% hold off | ||
% set(gcf,'Color','white') | ||
% xlabel('Time','FontSize',14) | ||
% ylabel('Population','FontSize',14) | ||
% hh = gca; | ||
% set(hh,'FontSize',14) | ||
% title('Semilogx') | ||
% | ||
% figure(5) | ||
% for loop = 1:N | ||
% plot(t,x(:,loop),'Color',h(round(loop*64/N),:)) | ||
% hold on | ||
% end | ||
% hold off | ||
% title('Linear') | ||
% | ||
% figure(6) | ||
% for loop = 1:N | ||
% loglog(t,x(:,loop),'Color',h(round(loop*64/N),:)) | ||
% hold on | ||
% end | ||
% hold off | ||
% title('Log-Log') | ||
|
||
figure(7) | ||
for loop = 1:N | ||
semilogy(t,x(:,loop),'Color',h(round(loop*64/N),:)) | ||
hold on | ||
end | ||
hold off | ||
title('Semilogy') | ||
|
||
|
||
% Eigenvalues | ||
|
||
[V,D] = eig(W); | ||
|
||
Lyap = max(D); | ||
|
||
minD = min(Lyap) | ||
mxD = max(D(:,1)) | ||
mnD = mean(Lyap) | ||
|
||
|
||
figure(8) | ||
%semilogy(abs(V(:,1))) | ||
plot((V(:,1))) | ||
|
||
%histfixplot(Lyap,20,0,1.1*mxD); | ||
figure(9) | ||
plot(real(Lyap)) | ||
title('Eigenvalue Spectrum') | ||
|
||
%keyboard | ||
|
||
disp(' ') | ||
|
||
|
||
if fitype == 1 | ||
xlo = N/2 - delg - 2*sig1; | ||
xhi = N/2 - delg + 2*sig1; | ||
fit44 = sum(f(xlo:xhi)) | ||
pop44 = sum(x(sz,xlo:xhi))/Popend | ||
xlo = N/2 + delg - 2*sig2; | ||
xhi = N/2 + delg + 2*sig2; | ||
fit84 = sum(f(xlo:xhi)) | ||
pop84 = sum(x(sz,xlo:xhi))/Popend | ||
|
||
end | ||
|
||
|
||
|
||
function yd = quasispec(~,y) | ||
|
||
if fitype == 3 % frequency-dependent Hamming | ||
for loop = 1:N | ||
ftemp(loop) = sum(payoff(:,loop).*y); | ||
end | ||
f = time_expand*ftemp/sum(ftemp); | ||
end | ||
|
||
|
||
% Transition matrix | ||
for yloop = 1:N | ||
for xloop = 1:N | ||
W(yloop,xloop) = f(yloop)*Q(yloop,xloop); | ||
end | ||
end | ||
|
||
phi = sum(f'.*y); % Average fitness of population | ||
|
||
yd = W*y - phi*y; | ||
|
||
|
||
end % end quasispec | ||
|
||
|
||
|
||
|
||
end % end quasiSpec | ||
|