-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
FlipPhone, GravSynch and StandmapHom
- Loading branch information
Showing
3 changed files
with
260 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Thurs Oct 7 19:38:57 2021 | ||
@author: David Nolte | ||
Introduction to Modern Dynamics, 2nd edition (Oxford University Press, 2019) | ||
FlipPhone Example | ||
""" | ||
import numpy as np | ||
from scipy import integrate | ||
from matplotlib import pyplot as plt | ||
|
||
plt.close('all') | ||
fig = plt.figure() | ||
ax = fig.add_axes([0, 0, 1, 1], projection='3d') | ||
ax.axis('on') | ||
|
||
I1 = 0.45 | ||
I2 = 0.5 | ||
I3 = 0.55 | ||
|
||
def solve_lorenz(param, max_time=300.0, angle=0.0): | ||
|
||
# Flip Phone | ||
def flow_deriv(x_y_z, t0): | ||
|
||
x, y, z = x_y_z | ||
|
||
yp1 = ((I2-I3)/I1)*y*z; | ||
yp2 = ((I3-I1)/I2)*z*x; | ||
yp3 = ((I1-I2)/I3)*x*y; | ||
|
||
|
||
return [yp1, yp2, yp3] | ||
model_title = 'Flip Phone' | ||
|
||
t = np.linspace(0, max_time/4, int(250*max_time/4)) | ||
|
||
# Solve for trajectories | ||
x0 = [[0.01,1,0.01]] | ||
t = np.linspace(0, max_time, int(250*max_time)) | ||
x_t = np.asarray([integrate.odeint(flow_deriv, x0i, t) | ||
for x0i in x0]) | ||
|
||
x, y, z = x_t[0,:,:].T | ||
lines = ax.plot(x, y, z, '-') | ||
plt.setp(lines, linewidth=0.5) | ||
|
||
ax.view_init(30, angle) | ||
plt.show() | ||
plt.title(model_title) | ||
plt.savefig('Flow3D') | ||
|
||
return t, x_t | ||
|
||
ax.set_xlim((-1.1, 1.1)) | ||
ax.set_ylim((-1.1, 1.1)) | ||
ax.set_zlim((-1.1, 1.1)) | ||
|
||
t, x_t = solve_lorenz(max_time,angle=30) | ||
|
||
plt.figure(2) | ||
lines = plt.plot(t,x_t[0,:,0],t,x_t[0,:,1],t,x_t[0,:,2]) | ||
plt.setp(lines, linewidth=1) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Sat May 11 08:56:41 2019 | ||
@author: nolte | ||
D. D. Nolte, Introduction to Modern Dynamics: Chaos, Networks, Space and Time, 2nd ed. (Oxford,2019) | ||
""" | ||
|
||
# https://www.python-course.eu/networkx.php | ||
# https://networkx.github.io/documentation/stable/tutorial.html | ||
# https://networkx.github.io/documentation/stable/reference/functions.html | ||
|
||
import numpy as np | ||
from scipy import integrate | ||
from matplotlib import pyplot as plt | ||
import networkx as nx | ||
from UserFunction import linfit | ||
from pathlib import Path | ||
import time | ||
|
||
tstart = time.time() | ||
|
||
plt.close('all') | ||
|
||
Grav = 6.674*10**(-11) | ||
M0 = 1.989*10**30 | ||
M = .9*M0 | ||
prM = 'Mo' + str(int(M/M0)) | ||
c = 3*10**8 | ||
Rs = 2*Grav*M/c**2 | ||
#R = 19000 + 14959787 | ||
R = 4*Rs | ||
scale = 10**-7 | ||
|
||
Nfac = 25 # 25 | ||
N = 20 # 50 | ||
|
||
# model_case 1 = complete graph (Kuramoto transition) | ||
|
||
facoef = .2 | ||
nodecouple = nx.complete_graph(N) | ||
|
||
# function: omegout, yout = coupleN(G) | ||
def coupleN(G): | ||
# function: yd = flow_deriv(x_y) | ||
def flow_deriv(y, t0): | ||
|
||
yp = np.zeros(shape=(N,)) | ||
for omloop in range(N): | ||
temp = omega[omloop] | ||
linksz = G.nodes[omloop]['numlink'] | ||
for cloop in range(linksz): | ||
cindex = G.nodes[omloop]['link'][cloop] | ||
k = G.nodes[omloop]['coupling'][cloop] | ||
|
||
temp = temp + k * np.sin(y[cindex] - y[omloop]) | ||
|
||
yp[omloop] = temp | ||
|
||
yd = np.zeros(shape=(N,)) | ||
for omloop in range(N): | ||
yd[omloop] = yp[omloop] | ||
|
||
return yd | ||
|
||
# end of function flow_deriv(x_y) | ||
|
||
mnomega = 1.0 | ||
|
||
for nodeloop in range(N): | ||
omega[nodeloop] = G.nodes[nodeloop]['element'] | ||
|
||
x_y_z = omega | ||
|
||
# Settle-down Solve for the trajectories | ||
tsettle = 100 | ||
t = np.linspace(0, tsettle, tsettle) | ||
x_t = integrate.odeint(flow_deriv, x_y_z, t) | ||
x0 = x_t[tsettle - 1, 0:N] | ||
|
||
t = np.linspace(1, 1000, 1000) | ||
y = integrate.odeint(flow_deriv, x0, t) | ||
siztmp = np.shape(y) | ||
sy = siztmp[0] | ||
|
||
# Fit the frequency | ||
m = np.zeros(shape=(N,)) | ||
w = np.zeros(shape=(N,)) | ||
mtmp = np.zeros(shape=(4,)) | ||
btmp = np.zeros(shape=(4,)) | ||
for omloop in range(N): | ||
|
||
if np.remainder(sy, 4) == 0: | ||
mtmp[0], btmp[0] = linfit(t[0:sy // 2], y[0:sy // 2, omloop]) | ||
mtmp[1], btmp[1] = linfit(t[sy // 2 + 1:sy], y[sy // 2 + 1:sy, omloop]) | ||
mtmp[2], btmp[2] = linfit(t[sy // 4 + 1:3 * sy // 4], y[sy // 4 + 1:3 * sy // 4, omloop]) | ||
mtmp[3], btmp[3] = linfit(t, y[:, omloop]) | ||
else: | ||
sytmp = 4 * np.floor(sy / 4) | ||
mtmp[0], btmp[0] = linfit(t[0:sytmp // 2], y[0:sytmp // 2, omloop]) | ||
mtmp[1], btmp[1] = linfit(t[sytmp // 2 + 1:sytmp], y[sytmp // 2 + 1:sytmp, omloop]) | ||
mtmp[2], btmp[2] = linfit(t[sytmp // 4 + 1:3 * sytmp / 4], y[sytmp // 4 + 1:3 * sytmp // 4, omloop]) | ||
mtmp[3], btmp[3] = linfit(t[0:sytmp], y[0:sytmp, omloop]) | ||
|
||
# m[omloop] = np.median(mtmp) | ||
m[omloop] = np.mean(mtmp) | ||
|
||
w[omloop] = mnomega + m[omloop] | ||
|
||
omegout = m | ||
yout = y | ||
|
||
return omegout, yout | ||
# end of function: omegout, yout = coupleN(G) | ||
|
||
l = [] | ||
grav = [] | ||
omegatemp = np.array(()) | ||
h = 10 | ||
|
||
print(Rs/R/scale) | ||
h_dil = h * np.sqrt(1-Rs/R) | ||
lab = "_T" + "&S" | ||
for i in range(N): | ||
h_dil = (i*h) * np.sqrt(1 - Rs / (R+h_dil)) | ||
#l.append(i*h_dil) | ||
l.append(h_dil) | ||
|
||
grav.append(2*Grav*M/(c**2*R*scale*(1 + l[i]/R))) | ||
omegatemp = np.append(omegatemp,(grav[i])) | ||
|
||
Nlink = N * (N - 1) // 2 | ||
omega = np.zeros(shape=(N,)) | ||
|
||
|
||
meanomega = np.mean(omegatemp) | ||
omega = (omegatemp - meanomega) | ||
print(omegatemp) | ||
print(meanomega) | ||
print(omega) | ||
sto = np.std(omega) | ||
|
||
lnk = np.zeros(shape=(N,), dtype=int) | ||
for loop in range(N): | ||
nodecouple.nodes[loop]['element'] = omega[loop] | ||
nodecouple.nodes[loop]['link'] = list(nx.neighbors(nodecouple, loop)) | ||
nodecouple.nodes[loop]['numlink'] = np.size(list(nx.neighbors(nodecouple, loop))) | ||
lnk[loop] = np.size(list(nx.neighbors(nodecouple, loop))) | ||
|
||
avgdegree = np.mean(lnk) | ||
mnomega = 1 | ||
|
||
facval = np.zeros(shape=(Nfac,)) | ||
yy = np.zeros(shape=(Nfac, N)) | ||
xx = np.zeros(shape=(Nfac,)) | ||
for facloop in range(Nfac): | ||
print(facloop) | ||
|
||
fac = facoef * (16 * facloop / (Nfac)) * (1 / (N - 1)) * sto / mnomega | ||
for nodeloop in range(N): | ||
nodecouple.nodes[nodeloop]['coupling'] = np.zeros(shape=(lnk[nodeloop],)) | ||
for linkloop in range(lnk[nodeloop]): | ||
nodecouple.nodes[nodeloop]['coupling'][linkloop] = fac | ||
|
||
facval[facloop] = fac * avgdegree*scale | ||
|
||
omegout, yout = coupleN(nodecouple) # Here is the subfunction call for the flow | ||
|
||
for omloop in range(N): | ||
yy[facloop, omloop] = omegout[omloop] | ||
|
||
xx[facloop] = facval[facloop]/scale | ||
|
||
plt.figure(1) | ||
lines = plt.plot(xx, yy) | ||
plt.setp(lines, linewidth=0.5) | ||
plt.xticks(fontsize = 8) | ||
plt.xlabel('Couple Constant g') | ||
plt.yticks(fontsize = 8) | ||
plt.ylabel('Frequency') | ||
|
||
plt.title('Kuramoto Synchronization Transition') | ||
|
||
filename_out = Path("Plot_N" + str(N) + '_' + prM + lab + ".png") | ||
plt.savefig('GravSynch.png',dpi = 300) | ||
plt.show() | ||
|
||
|
||
elapsed_time = time.time() - tstart | ||
print('elapsed time = ', format(elapsed_time, '.2f'), 'secs') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters