-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
132 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
SteinsGate2D.py | ||
Created on Sat March 6, 2021 | ||
@author: David Nolte | ||
Introduction to Modern Dynamics, 2nd edition (Oxford University Press, 2019) | ||
2D simulation of Stein's Gate Divergence Meter | ||
""" | ||
import numpy as np | ||
from scipy import integrate | ||
from matplotlib import pyplot as plt | ||
|
||
plt.close('all') | ||
|
||
def solve_flow(param,lim = [-6,6,-6,6],max_time=20.0): | ||
|
||
|
||
def flow_deriv(x_y, t0, alpha, beta, gamma): | ||
#"""Compute the time-derivative .""" | ||
x, y = x_y | ||
|
||
w = 1 | ||
R2 = x**2 + y**2 | ||
R = np.sqrt(R2) | ||
arg = (R-2)/0.1 | ||
env1 = 1/(1+np.exp(arg)) | ||
env2 = 1 - env1 | ||
|
||
f = env2*(x*(1/(R-1.99)**2 + 1e-2) - x) + env1*(w*y + w*x*(1 - R)) | ||
g = env2*(y*(1/(R-1.99)**2 + 1e-2) + y) + env1*(-w*x + w*y*(1 - R)) | ||
|
||
return [f,g] | ||
model_title = 'Steins Gate' | ||
|
||
plt.figure() | ||
xmin = lim[0] | ||
xmax = lim[1] | ||
ymin = lim[2] | ||
ymax = lim[3] | ||
plt.axis([xmin, xmax, ymin, ymax]) | ||
|
||
N = 24*4 + 47 | ||
x0 = np.zeros(shape=(N,2)) | ||
ind = -1 | ||
for i in range(0,24): | ||
ind = ind + 1 | ||
x0[ind,0] = xmin + (xmax-xmin)*i/23 | ||
x0[ind,1] = ymin | ||
ind = ind + 1 | ||
x0[ind,0] = xmin + (xmax-xmin)*i/23 | ||
x0[ind,1] = ymax | ||
ind = ind + 1 | ||
x0[ind,0] = xmin | ||
x0[ind,1] = ymin + (ymax-ymin)*i/23 | ||
ind = ind + 1 | ||
x0[ind,0] = xmax | ||
x0[ind,1] = ymin + (ymax-ymin)*i/23 | ||
ind = ind + 1 | ||
x0[ind,0] = 0.05 | ||
x0[ind,1] = 0.05 | ||
|
||
for thetloop in range(0,10): | ||
ind = ind + 1 | ||
theta = 2*np.pi*(thetloop)/10 | ||
ys = 0.125*np.sin(theta) | ||
xs = 0.125*np.cos(theta) | ||
x0[ind,0] = xs | ||
x0[ind,1] = ys | ||
|
||
for thetloop in range(0,10): | ||
ind = ind + 1 | ||
theta = 2*np.pi*(thetloop)/10 | ||
ys = 1.7*np.sin(theta) | ||
xs = 1.7*np.cos(theta) | ||
x0[ind,0] = xs | ||
x0[ind,1] = ys | ||
|
||
for thetloop in range(0,20): | ||
ind = ind + 1 | ||
theta = 2*np.pi*(thetloop)/20 | ||
ys = 2*np.sin(theta) | ||
xs = 2*np.cos(theta) | ||
x0[ind,0] = xs | ||
x0[ind,1] = ys | ||
|
||
ind = ind + 1 | ||
x0[ind,0] = -3 | ||
x0[ind,1] = 0.05 | ||
ind = ind + 1 | ||
x0[ind,0] = -3 | ||
x0[ind,1] = -0.05 | ||
ind = ind + 1 | ||
x0[ind,0] = 3 | ||
x0[ind,1] = 0.05 | ||
ind = ind + 1 | ||
x0[ind,0] = 3 | ||
x0[ind,1] = -0.05 | ||
ind = ind + 1 | ||
x0[ind,0] = -6 | ||
x0[ind,1] = 0.00 | ||
ind = ind + 1 | ||
x0[ind,0] = 6 | ||
x0[ind,1] = 0.00 | ||
|
||
colors = plt.cm.prism(np.linspace(0, 1, N)) | ||
|
||
# Solve for the trajectories | ||
t = np.linspace(0, max_time, int(250*max_time)) | ||
x_t = np.asarray([integrate.odeint(flow_deriv, x0i, t, param) | ||
for x0i in x0]) | ||
|
||
for i in range(N): | ||
x, y = x_t[i,:,:].T | ||
lines = plt.plot(x, y, '-', c=colors[i]) | ||
plt.setp(lines, linewidth=1) | ||
|
||
|
||
plt.show() | ||
plt.title(model_title) | ||
|
||
|
||
return t, x_t | ||
|
||
param = (0.02,0.5,0.2) # Steins Gate | ||
lim = (-6,6,-6,6) | ||
|
||
t, x_t = solve_flow(param,lim) | ||
|
||
plt.savefig('Steins Gate') |