-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
487 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Original file line | Diff line number | Diff line change |
---|---|---|---|
@@ -0,0 +1,116 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Tue Feb 16 19:50:54 2021 | |||
caustic.py | |||
@author: nolte | |||
D. D. Nolte, Optical Interferometry for Biology and Medicine (Springer,2011) | |||
""" | |||
|
|||
import numpy as np | |||
from matplotlib import pyplot as plt | |||
from numpy import random as rnd | |||
from scipy import signal as signal | |||
|
|||
plt.close('all') | |||
|
|||
N = 256 | |||
|
|||
def gauss2(sy,sx,wy,wx): | |||
|
|||
x = np.arange(-sx/2,sy/2,1) | |||
y = np.arange(-sy/2,sy/2,1) | |||
y = y[..., None] | |||
|
|||
ex = np.ones(shape=(sy,1)) | |||
x2 = np.kron(ex,x**2/(2*wx**2)); | |||
|
|||
ey = np.ones(shape=(1,sx)); | |||
y2 = np.kron(y**2/(2*wy**2),ey); | |||
|
|||
rad2 = (x2+y2); | |||
|
|||
A = np.exp(-rad2); | |||
|
|||
return A | |||
|
|||
def cauchy(sy,sx,wy,wx): | |||
|
|||
x = np.arange(-sx/2,sy/2,1) | |||
y = np.arange(-sy/2,sy/2,1) | |||
y = y[..., None] | |||
|
|||
ex = np.ones(shape=(sy,1)) | |||
x2 = np.kron(ex,x**2/(2*wx**2)) | |||
|
|||
ey = np.ones(shape=(1,sx)) | |||
y2 = np.kron(y**2/(2*wy**2),ey) | |||
|
|||
rad2 = (x2+y2) | |||
|
|||
A = 1/(1+rad2) | |||
|
|||
return A | |||
|
|||
def speckle2(sy,sx,wy,wx): | |||
|
|||
Btemp = 2*np.pi*rnd.rand(sy,sx); | |||
B = np.exp(complex(0,1)*Btemp); | |||
|
|||
C = gauss2(sy,sx,wy,wx); | |||
|
|||
Atemp = signal.convolve2d(B,C,'same'); | |||
|
|||
Intens = np.mean(np.mean(np.abs(Atemp)**2)); | |||
|
|||
D = np.real(Atemp/np.sqrt(Intens)); | |||
|
|||
Dphs = np.arctan2(np.imag(D),np.real(D)); | |||
|
|||
return D, Dphs | |||
|
|||
|
|||
Sp, Sphs = speckle2(N,N,N/16,N/16) | |||
|
|||
#Sp = cauchy(N,N,N/16,N/16) | |||
|
|||
plt.figure(2) | |||
plt.matshow(Sp,2,cmap=plt.cm.get_cmap('seismic')) # hsv, seismic, bwr | |||
plt.show() | |||
|
|||
fx, fy = np.gradient(Sp); | |||
|
|||
fxx,fxy = np.gradient(fx); | |||
fyx,fyy = np.gradient(fy); | |||
|
|||
J = fxx*fyy - fxy*fyx; | |||
|
|||
D = np.abs(1/J) | |||
|
|||
plt.figure(3) | |||
plt.matshow(D,3,cmap=plt.cm.get_cmap('gray')) # hsv, seismic, bwr | |||
plt.clim(0,0.5e7) | |||
plt.show() | |||
|
|||
eps = 1e-7 | |||
cnt = 0 | |||
E = np.zeros(shape=(N,N)) | |||
for yloop in range(0,N-1): | |||
for xloop in range(0,N-1): | |||
|
|||
d = N/2 | |||
|
|||
indx = int(N/2 + (d*(fx[yloop,xloop])+(xloop-N/2)/2)) | |||
indy = int(N/2 + (d*(fy[yloop,xloop])+(yloop-N/2)/2)) | |||
|
|||
if ((indx > 0) and (indx < N)) and ((indy > 0) and (indy < N)): | |||
E[indy,indx] = E[indy,indx] + 1 | |||
|
|||
plt.figure(4) | |||
plt.imshow(E,interpolation='bicubic',cmap=plt.cm.get_cmap('gray')) | |||
plt.clim(0,20) | |||
plt.xlim(N/4, 3*N/4) | |||
plt.ylim(N/4,3*N/4) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Original file line | Diff line number | Diff line change |
---|---|---|---|
@@ -0,0 +1,134 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Tue Feb 16 19:50:54 2021 | |||
caustic.py | |||
@author: nolte | |||
D. D. Nolte, Optical Interferometry for Biology and Medicine (Springer,2011) | |||
""" | |||
|
|||
import numpy as np | |||
from matplotlib import pyplot as plt | |||
from numpy import random as rnd | |||
from scipy import signal as signal | |||
|
|||
plt.close('all') | |||
|
|||
N = 256 | |||
|
|||
def grav(sy,sx,w): | |||
|
|||
x = np.arange(-sx/2,sy/2,1) | |||
y = np.arange(-sy/2,sy/2,1) | |||
y = y[..., None] | |||
|
|||
ex = np.ones(shape=(sy,1)) | |||
x2 = np.kron(ex,x**2); | |||
|
|||
ey = np.ones(shape=(1,sx)); | |||
y2 = np.kron(y**2,ey); | |||
|
|||
rad2 = (x2+y2); | |||
|
|||
A = np.positive(1.0/np.sqrt((1.0 - w/np.sqrt(rad2)))**2 + 1e-10) ; | |||
|
|||
return A | |||
|
|||
def gauss2(sy,sx,wy,wx): | |||
|
|||
x = np.arange(-sx/2,sy/2,1) | |||
y = np.arange(-sy/2,sy/2,1) | |||
y = y[..., None] | |||
|
|||
ex = np.ones(shape=(sy,1)) | |||
x2 = np.kron(ex,x**2/(2*wx**2)); | |||
|
|||
ey = np.ones(shape=(1,sx)); | |||
y2 = np.kron(y**2/(2*wy**2),ey); | |||
|
|||
rad2 = (x2+y2); | |||
|
|||
A = np.exp(-rad2); | |||
|
|||
return A | |||
|
|||
def cauchy(sy,sx,wy,wx): | |||
|
|||
x = np.arange(-sx/2,sy/2,1) | |||
y = np.arange(-sy/2,sy/2,1) | |||
y = y[..., None] | |||
|
|||
ex = np.ones(shape=(sy,1)) | |||
x2 = np.kron(ex,x**2/(2*wx**2)) | |||
|
|||
ey = np.ones(shape=(1,sx)) | |||
y2 = np.kron(y**2/(2*wy**2),ey) | |||
|
|||
rad2 = (x2+y2) | |||
|
|||
A = 1/(1+rad2) | |||
|
|||
return A | |||
|
|||
def speckle2(sy,sx,wy,wx): | |||
|
|||
Btemp = 2*np.pi*rnd.rand(sy,sx); | |||
B = np.exp(complex(0,1)*Btemp); | |||
|
|||
C = gauss2(sy,sx,wy,wx); | |||
|
|||
Atemp = signal.convolve2d(B,C,'same'); | |||
|
|||
Intens = np.mean(np.mean(np.abs(Atemp)**2)); | |||
|
|||
D = np.real(Atemp/np.sqrt(Intens)); | |||
|
|||
Dphs = np.arctan2(np.imag(D),np.real(D)); | |||
|
|||
return D, Dphs | |||
|
|||
|
|||
#Sp = grav(N,N,N/8) | |||
|
|||
Sp = cauchy(N,N,N/8,N/8) | |||
|
|||
plt.figure(2) | |||
plt.matshow(Sp,2,cmap=plt.cm.get_cmap('seismic')) # hsv, seismic, bwr | |||
plt.show() | |||
|
|||
fx, fy = np.gradient(Sp); | |||
|
|||
fxx,fxy = np.gradient(fx); | |||
fyx,fyy = np.gradient(fy); | |||
|
|||
J = fxx*fyy - fxy*fyx; | |||
|
|||
D = np.abs(1/J) | |||
|
|||
plt.figure(3) | |||
plt.matshow(D,3,cmap=plt.cm.get_cmap('gray')) # hsv, seismic, bwr | |||
plt.clim(0,0.5e7) | |||
plt.show() | |||
|
|||
eps = 1e-7 | |||
cnt = 0 | |||
E = np.zeros(shape=(N,N)) | |||
for yloop in range(0,N-1): | |||
for xloop in range(0,N-1): | |||
|
|||
d = 5*N/2 | |||
|
|||
indx = int(N/2 + (d*(fx[yloop,xloop])+(xloop-N/2)/2)) | |||
indy = int(N/2 + (d*(fy[yloop,xloop])+(yloop-N/2)/2)) | |||
|
|||
if ((indx > 0) and (indx < N)) and ((indy > 0) and (indy < N)): | |||
E[indy,indx] = E[indy,indx] + 1 | |||
|
|||
plt.figure(4) | |||
plt.imshow(E,interpolation='bicubic',cmap=plt.cm.get_cmap('gray')) | |||
plt.clim(0,20) | |||
plt.xlim(N/4, 3*N/4) | |||
plt.ylim(N/4,3*N/4) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Original file line | Diff line number | Diff line change |
---|---|---|---|
@@ -0,0 +1,74 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Tue Mar 30 19:47:31 2021 | |||
gravfront.py | |||
@author: David Nolte | |||
Introduction to Modern Dynamics, 2nd edition (Oxford University Press, 2019) | |||
Gravitational Lensing | |||
""" | |||
|
|||
import numpy as np | |||
from matplotlib import pyplot as plt | |||
|
|||
plt.close('all') | |||
|
|||
def refindex(x): | |||
n = n0/(1 + abs(x)**expon)**(1/expon); | |||
return n | |||
|
|||
|
|||
delt = 0.001 | |||
Ly = 10 | |||
Lx = 5 | |||
n0 = 1 | |||
expon = 2 # adjust this from 1 to 10 | |||
|
|||
|
|||
delx = 0.01 | |||
rng = np.int(Lx/delx) | |||
x = delx*np.linspace(-rng,rng) | |||
|
|||
n = refindex(x) | |||
|
|||
dndx = np.diff(n)/np.diff(x) | |||
|
|||
plt.figure(1) | |||
lines = plt.plot(x,n) | |||
|
|||
plt.figure(2) | |||
lines2 = plt.plot(dndx) | |||
|
|||
plt.figure(3) | |||
plt.xlim(-Lx, Lx) | |||
plt.ylim(-Ly, 2) | |||
Nloop = 160; | |||
xd = np.zeros((Nloop,3)) | |||
yd = np.zeros((Nloop,3)) | |||
for loop in range(0,Nloop): | |||
xp = -Lx + 2*Lx*(loop/Nloop) | |||
plt.plot([xp, xp],[2, 0],'b',linewidth = 0.25) | |||
|
|||
thet = (refindex(xp+delt) - refindex(xp-delt))/(2*delt) | |||
xb = xp + np.tan(thet)*Ly | |||
plt.plot([xp, xb],[0, -Ly],'b',linewidth = 0.25) | |||
|
|||
for sloop in range(0,3): | |||
delay = n0/(1 + abs(xp)**expon)**(1/expon) - n0 | |||
dis = 0.75*(sloop+1)**2 - delay | |||
xfront = xp + np.sin(thet)*dis | |||
yfront = -dis*np.cos(thet) | |||
|
|||
xd[loop,sloop] = xfront | |||
yd[loop,sloop] = yfront | |||
|
|||
for sloop in range(0,3): | |||
plt.plot(xd[:,sloop],yd[:,sloop],'r',linewidth = 0.5) | |||
|
|||
|
|||
|
|||
|
|||
|
Oops, something went wrong.