This is the implementation for Dynamic Low-light Imaging with Quanta Image Sensors, Yiheng Chi, Abhiram Gnanasambandam, Vladlen Koltun, Stanley H. Chan, in ECCV, 2020.
- Download the repository
- Keras
- PIL
- numpy
We used the PASCAL VOC 2008 dataset for training and synthetic testing. Other standard image datasets should be compatible.
- Prepare the pretrained models of motion teacher and denoising teacher.
- The motion teacher used in our implementation is Burst Denoising with Kernel Prediction Networks, Ben Mildenhall, Jonathan T. Barron, Jiawen Chen, Dillon Sharlet, Ren Ng, Robert Carroll, in CVPR, 2018.
- The denoising teacher used in our implementation is Image Reconstruction for Quanta Image Sensors Using Deep Neural Networks, Joon Hee Choi, Omar A. Elgendy, Stanley H. Chan, in ICASSP, 2019.
- Prepare the feature extraction functions to load features from teachers (See utils.py).
- Usage:
python e2_main.py --phase train
- A model pretrained using the default setting (photon level = 2 ppp, motion magnitude = 4 pixels) is available in the repository.
- Usage:
python e2_main.py --phase test
usage: e2_main.py [-h] [--phase PHASE] [--patches NUM_PATCH]
[--patchsize PATCH_SZ] [--burstsize BURST_SZ]
[--batchsize BATCH_SZ] [--epochs EPOCHS] [--lr LR]
[--jit JIT] [--J J] [--alpha ALPHA] [--ckpt_dir CKPT_DIR]
[--train_dir TRAIN_DIR] [--valid_dir VALID_DIR]
[--test_dir TEST_DIR] [--output_dir OUTPUT_DIR]
[--ckpt_file CKPT_FILE] [--shift_ckpt SHIFT_CKPT]
[--noisy_ckpt NOISY_CKPT] [--seed SEED]
optional arguments:
-h, --help show this help message and exit
--phase train or test
--patches number of patches extracted from an image
--patchsize patch size, height/width of frames in each burst
--burstsize burst size, number of frames in each burst
--batchsize batch size, number of bursts in each batch
--epochs number of epoch
--lr learning rate
--jit jit
--J downsample ratio J
--alpha alpha
--ckpt_dir the directory that models are saved
--train_dir the directory that training images are saved
--valid_dir the directory that validation images are saved
--test_dir the directory that test images are saved
--output_dir the directory to save processed test images
--ckpt_file the file that models are saved
--shift_ckpt the file of shift model
--noisy_ckpt the file of noisy model
--seed random seed number
@inproceedings{chi2020dynamic,
title={Dynamic low-light imaging with quanta image sensors},
author={Chi, Yiheng and Gnanasambandam, Abhiram and Koltun, Vladlen and Chan, Stanley H},
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XXI 16},
pages={122--138},
year={2020},
organization={Springer}
}