-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
158 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
############# | ||
# Chapter 7.1 Principles of Regression | ||
|
||
## Linear regression: Straight Line | ||
|
||
# R code to fit data points using a straight line | ||
|
||
library(pracma) | ||
|
||
N <- 50 | ||
x <- runif(N) | ||
|
||
a <- 2.5 # true parameter | ||
b <- 1.3 # true parameter | ||
y <- a*x + b + 0.2*rnorm(N) # Synthesize training data | ||
|
||
X <- cbind(x, rep(1, N)) | ||
theta <- lsfit(X, y)$coefficients | ||
t <- linspace(0, 1, 200) | ||
yhat <- theta[2]*t + theta[1] | ||
plot(x, y, pch=19) | ||
lines(t, yhat, col='red', lwd=4) | ||
legend("bottomright", c("Best Fit", "Data"), fill=c("red", "black")) | ||
|
||
## Linear regression: Polynomial | ||
|
||
# R code to fit data using a quadratic equation | ||
|
||
N <- 50 | ||
x <- runif(N) | ||
a <- -2.5 | ||
b <- 1.3 | ||
c <- 1.2 | ||
y <- a*x**2 + b*x + c + 0.2*rnorm(N) | ||
X <- cbind(rep(1, N), x, x**2) | ||
theta <- lsfit(X, y)$coefficients | ||
t = linspace(0, 1, 200) | ||
print(theta) | ||
yhat = theta[1] + theta[2]*t + theta[3]*t**2 | ||
plot(x,y,pch=19) | ||
lines(t,yhat,col='red',lwd=4) | ||
|
||
## Legendre Polynomial | ||
|
||
# R code to fit data using a quadratic equation | ||
|
||
library(pracma) | ||
|
||
N <- 50 | ||
x <- linspace(-1,1,N) | ||
a <- c(-0.001, 0.01, 0.55, 1.5, 1.2) | ||
y <- a[1]*legendre(0, x) + a[2]*legendre(1, x)[1,] + | ||
a[3]*legendre(2, x)[1,] + a[4]*legendre(3, x)[1,] + | ||
a[5]*legendre(4, x)[1,] + 0.2*rnorm(N) | ||
|
||
X <- cbind(legendre(0, x), legendre(1, x)[1,], | ||
legendre(2, x)[1,], legendre(3, x)[1,], | ||
legendre(4, x)[1,]) # good | ||
|
||
beta <- mldivide(X, y) | ||
|
||
t <- linspace(-1, 1, 50) | ||
yhat <- beta[1]*legendre(0, x) + beta[2]*legendre(1, x)[1,] + | ||
beta[3]*legendre(2, x)[1,] + beta[4]*legendre(3, x)[1,] + | ||
beta[5]*legendre(4, x)[1,] | ||
|
||
plot(x, y, pch=19, col="blue") | ||
lines(t, yhat, lwd=2, col="orange") | ||
|
||
## Auto-regressive model | ||
|
||
# R code for auto-regressive model | ||
|
||
library(pracma) | ||
|
||
N <- 500 | ||
y <- cumsum(0.2*rnorm(N)) + 0.05*rnorm(N) | ||
|
||
L <- 100 | ||
c <- c(0, y[0:(400-1)]) | ||
r = rep(0, L) | ||
X = Toeplitz(c,r) | ||
beta <- mldivide(X, y[1:400]) | ||
yhat = X %*% beta | ||
plot(y[1:400]) | ||
lines(yhat[1:400], col="red") | ||
|
||
## Robust regression by linear programming | ||
|
||
# R code to demonstrate robust regression TODO | ||
|
||
library(pracma) | ||
|
||
N <- 50 | ||
x <- linspace(-1,1,N) | ||
a <- c(-0.001, 0.01, 0.55, 1.5, 1.2) | ||
y <- a[1]*legendre(0, x) + a[2]*legendre(1, x)[1,] + | ||
a[3]*legendre(2, x)[1,] + a[4]*legendre(3, x)[1,] + | ||
a[5]*legendre(4, x)[1,] + 0.2*rnorm(N) | ||
|
||
idx <- c(10, 16, 23, 37, 45) | ||
y[idx] <- 5 | ||
|
||
X <- cbind(rep(1,N), x, x**2, x**3, x**4) | ||
A <- rbind(cbind(X, -1*diag(N)), cbind(-X, -1*diag(N))) | ||
b <- c(y, -y) | ||
c <- c(rep(0, 5), rep(1, N)) | ||
res <- linprog(c, A, b, maxiter=1000000) | ||
beta <- res.x | ||
t <- linspace(-1, 1, 200) | ||
|
||
# yhat <- | ||
# plot(x, y, pch=19, col="blue") | ||
# lines(t, yhat, lwd=2, col="orange") | ||
|
||
############# | ||
# Chapter 7.2 Overfitting | ||
|
||
## Overfitting example | ||
|
||
# R: An overfitting example (TODO) | ||
|
||
N <- 20 | ||
x <- sort(1*rnorm(N)*2-1) | ||
a <- c(-0.001, 0.01, 0.55, 1.5, 1.2) | ||
y <- a[1]*legendre(0, x) + a[2]*legendre(1, x)[1,] + | ||
a[3]*legendre(2, x)[1,] + a[4]*legendre(3, x)[1,] + | ||
a[5]*legendre(4, x)[1,] + 0.1*rnorm(N) | ||
|
||
P <- 20 | ||
|
||
beta <- mldivide(X\y) | ||
|
||
## Learning curve | ||
|
||
# R | ||
|
||
############# | ||
# Chapter 7.3 Bias and Variance | ||
|
||
## Mean estimator | ||
|
||
# R code to visualize the average predictor (TODO) | ||
|
||
############# | ||
# Chapter 7.4 Regularization | ||
|
||
## Ridge regression | ||
|
||
# R code to demonstrate a ridge regression example (TODO) | ||
|
||
## LASSO regression | ||
|
||
# R (TODO) | ||
|
||
## LASSO vs Ridge | ||
|
||
# R code to demonstrate overfitting and LASSO (TODO) |