-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #11 from bishta/chapter-10
Finish Chapter 10
- Loading branch information
Showing
5 changed files
with
1,242 additions
and
0 deletions.
There are no files selected for viewing
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,282 @@ | ||
############# | ||
# Chapter 10.2 Mean and correlation functions | ||
|
||
## Example 10.5 | ||
|
||
# R code for Example 10.5 | ||
x = matrix(0, 1000, 20) | ||
t = seq(-2, 2, (2+2)/999) | ||
|
||
for (i in 1:20) { | ||
x[,i] = runif(1) * cos(2 * pi * t) | ||
} | ||
|
||
matplot(t, x, lwd=2, col="gray") | ||
grid() | ||
lines(t, 0.5*cos(2*pi*t), lwd=4, col="darkred") | ||
|
||
## Example 10.6 | ||
|
||
# R code for Example 10.6 | ||
x = matrix(0, 1000, 20) | ||
t = seq(-2, 2, (2+2)/999) | ||
|
||
for (i in 1:20) { | ||
x[,i] = cos(2*pi*t+2*pi*runif(1)) | ||
} | ||
|
||
matplot(t, x, lwd=2, col="gray") | ||
grid() | ||
lines(t, 0*cos(2*pi*t), lwd=4, col="darkred") | ||
|
||
## Example 10.8 | ||
|
||
# R code for Example 10.7 | ||
x = matrix(0, 21, 20) | ||
t = 0:20 | ||
|
||
for (i in 1:20) { | ||
x[,i] = runif(1) ^ t | ||
} | ||
|
||
stem <- function(x,y,pch=1,...){ | ||
if (missing(y)){ | ||
y = x | ||
x = 1:length(x) | ||
} | ||
for (i in 1:length(x)){ | ||
lines(c(x[i],x[i]), c(0,y[i]), ...) | ||
} | ||
lines(c(x[1]-2,x[length(x)]+2), c(0,0), ...) | ||
} | ||
|
||
matplot(t, x, pch=1, col="gray", lwd=2) | ||
grid() | ||
|
||
for (i in 1:ncol(x)) { | ||
stem(t, x[,i], col="gray", lwd=2) | ||
} | ||
stem(t, 1/(t+1), col="darkred", lwd=2, pch=1, type="o") | ||
|
||
## Example 10.11 | ||
|
||
# R code for Example 10.11: Plot the time function | ||
t = seq(-2, 2, len = 1000) | ||
x = matrix(0, 1000, 20) | ||
|
||
for (i in 1:20) { | ||
x[,i] = runif(1) * cos(2*pi*t) | ||
} | ||
|
||
matplot(t, x, lwd=2, col="gray", type="l", lty="solid", xaxp=c(-2,2, 8)) | ||
grid() | ||
lines(t, 0.5*cos(2*pi*t), lwd=5, col="darkred") | ||
points(numeric(20), x[501,], lwd=2, col="darkorange") | ||
points(numeric(20) + 0.5, x[626,], lwd=2, col="blue", pch=4) | ||
|
||
# R code for Example 10.11: Plot the autocorrelation function | ||
t = seq(-1, 1, len=1000) | ||
R = (1/3)*outer(cos(2*pi*t), cos(2*pi*t)) | ||
image(t, t, R, col=topo.colors(255), xlab="t_1", ylab="t_2") | ||
|
||
## Example 10.12 | ||
|
||
# R code for Example 10.11: Plot the time function | ||
t = seq(-2, 2, len = 1000) | ||
x = matrix(0, 1000, 20) | ||
|
||
for (i in 1:20) { | ||
x[,i] = cos((2*pi*t) + (2*pi*runif(1))) | ||
} | ||
|
||
matplot(t, x, lwd=2, col="gray", type="l", lty="solid", xaxp=c(-2,2, 8)) | ||
grid() | ||
lines(t, 0*cos(2*pi*t), lwd=5, col="darkred") | ||
points(numeric(20), x[501,], lwd=2, col="darkorange") | ||
points(numeric(20) + 0.5, x[626,], lwd=2, col="blue", pch=4) | ||
|
||
# R code for Example 10.12: Plot the autocorrelation function | ||
t = seq(-1, 1, len=1000) | ||
R = toeplitz(0.5*(cos(2*pi*t))) | ||
image(t, t, R, col=topo.colors(255), ylim=c(1,-1), xlab="t_1", ylab="t_2") | ||
|
||
############# | ||
# Chapter 10.3 Wide sense stationary processes | ||
|
||
## Example 10.14 | ||
|
||
# R code to demonstrate autocorrelation | ||
|
||
# Figure 1 | ||
Xa = rnorm(1000) | ||
Xa2 = rnorm(1000) | ||
|
||
plot(Xa, type="l", lwd=2, col="blue") | ||
grid() | ||
lines(Xa2, lwd=2) | ||
|
||
# Figure 2 | ||
N = 1000 | ||
T = 1000 | ||
X = matrix(rnorm(N*T), N, T) | ||
xc = matrix(0, N, 2*T-1) | ||
|
||
for (i in 1:N) { | ||
xc[i,] = ccf(X[i,], X[i,], lag.max=2*T-1, pl=FALSE)$acf/T | ||
} | ||
|
||
plot(xc[1,], type="l", lwd=2, col="darkblue") | ||
lines(xc[2,], lwd=2) | ||
|
||
############# | ||
# Chapter 10.5 Wide sense stationary processes | ||
|
||
## Example 10.15 | ||
|
||
# R code for Example 10.15 | ||
t = seq(-10, 10, by=0.001) | ||
L = length(t) | ||
X = rnorm(L) | ||
h = 10 * sapply((1 - abs(t)), max, 0) / 1000 | ||
Y = convolve(X, h, type=c("circular")) | ||
|
||
# Figure 1 | ||
plot(t, X, lwd=1, col="gray", type="l") | ||
grid() | ||
legend(6, 3.8, legend=c("X(t)", "μ_x(t)", "Y(t)", "μ_y(t)"), col=c("gray", "black", "darkorange", "yellow"), lty=c(1, 1, 1, 3), lwd=c(1, 4, 3, 4), bg="white") | ||
abline(h=0, lwd=4, lty=1, col="yellow") | ||
lines(t, Y, lwd=3, col="darkorange") | ||
abline(h=0, lwd=4, lty=3) | ||
|
||
# Figure 2 | ||
h2 = convolve(h, h, type="open") | ||
Rx = numeric(40001) | ||
Rx[20001] = 0.2 | ||
plot(seq(-20, 20, by=0.001), Rx, lwd=2, col="gray", type="l", xlim=c(-2,2), ylim=c(-0.05, 0.2)) | ||
grid() | ||
legend(-2, 0.19, legend=c("R_x(t)", "R_y(t)"), col=c("gray", "darkorange"), lty=1:1, lwd=2) | ||
lines(seq(-20, 20, by=0.001), h2, lwd=2, col="darkorange") | ||
|
||
############# | ||
# Chapter 10.6 Optimal linear filter | ||
|
||
## Solve the Yule Walker equation | ||
|
||
# R code to solve the Yule Walker Equation | ||
|
||
y = scan("./ch10_LPC_data.txt") | ||
K = 10 | ||
N = 320 | ||
y_corr = ccf(y, y, lag.max=2*length(y)-1, pl=FALSE)$acf | ||
R = toeplitz(y_corr[N + 1:K-1]) | ||
lhs = y_corr[N + 1:K] | ||
h = solve(R, lhs) | ||
|
||
# Figure 1 | ||
plot(y, lwd = 4, col="blue", type="l") | ||
grid() | ||
legend(10, 0.1, legend=c("Y[n]"), col=c("blue"), lty=1:1, lwd=4) | ||
|
||
# Figure 2 | ||
plot(y_corr, lwd = 4, type="l") | ||
grid() | ||
legend(10, 0.9, legend=c("R_y[k]"), col=c("black"), lty=1:1, lwd=4) | ||
|
||
## Predict sample | ||
|
||
# R code to predict the samples | ||
y = scan("./ch10_LPC_data_02.txt") | ||
K = 10 | ||
N = length(y) | ||
|
||
y_corr = ccf(y, y, lag.max=2*N-1)$acf[,,1] | ||
R = toeplitz(y_corr[N + 1:K-1]) | ||
lhs = y_corr[N + 1:K] | ||
h = solve(R, lhs) | ||
|
||
z = y[311:320] | ||
yhat = numeric(340) | ||
yhat[1:320] = y | ||
|
||
for (t in 1:20) { | ||
predict = t(z) * h | ||
z = c(z[2:10], predict) | ||
yhat[320+t] = predict | ||
} | ||
|
||
plot(yhat, lwd=3, col="red", type="l") | ||
grid() | ||
legend(10, 0.9, legend=c("Prediction", "Input"), col=c("red", "gray"), lty=c(1, 2), lwd=2) | ||
lines(y, lwd=4, col="gray", lty=3) | ||
|
||
## Wiener filter | ||
|
||
# R code for Wiener filtering | ||
library(pracma) | ||
y = scan("./ch10_LPC_data_02.txt") | ||
w = 0.05 * rnorm(320) | ||
x = y + w | ||
|
||
Ry = ccf(y, y, lag.max=2*length(y)-1, pl=FALSE)$acf | ||
Rw = ccf(w, w, lag.max=2*length(w)-1, pl=FALSE)$acf | ||
Sy = fft(Ry) | ||
Sw = fft(Rw) | ||
H = Sy / (Sy + Sw) | ||
|
||
a = x[1:639] | ||
a[is.na(a)] = 0 | ||
Yhat = H * fft(a[1:639]) | ||
yhat = Re(ifft(as.vector(Yhat))) | ||
|
||
# Figure 1 | ||
plot(x, lwd=5, col="gray", type="l") | ||
grid() | ||
legend(10, -0.7, legend=c("Noisy Input X[n]", "Wiener Filtered Yhat[n]", "Ground Truth Y[n]"), col=c("gray", "red", "black"), lty=c(1, 1, 2), lwd=2) | ||
lines(yhat[1:320], lwd=2, col="red") | ||
lines(y, lwd=2, lty=3) | ||
|
||
# Figure 2 | ||
plot(Rw, lwd=4, col="blue", label="h[n]", type="l") | ||
legend(500, 0.85, legend=c("h[n]"), col=c("blue"), lty=c(1), lwd=c(4)) | ||
grid() | ||
|
||
## Wiener deblurring | ||
|
||
# R code to solve the Wiener deconvolution problem | ||
library(pracma) | ||
|
||
conv_same = function(x, y) { | ||
s = length(y) / 2 | ||
e = length(x) + s - 1 | ||
return (convolve(x, y, type="open")[s:e]) | ||
} | ||
|
||
y = scan("./ch10_wiener_deblur_data.txt") | ||
g = ones(32, 1)/32 | ||
w = 0.02 * rnorm(320) | ||
s = length(y)/2 | ||
e = length(g) + s - 1 | ||
x = conv_same(y, g) + w | ||
|
||
Ry = ccf(y, y, lag.max=2*length(y)-1, pl=FALSE)$acf | ||
Rw = ccf(w, w, lag.max=2*length(w)-1, pl=FALSE)$acf | ||
Sy= fft(Ry) | ||
Sw = fft(Rw) | ||
a = g[1:639] | ||
a[is.na(a)] = 0 | ||
G = fft(a[1:639]) | ||
|
||
H = (Conj(G) * Sy) / (abs(G) ^ 2 * Sy + Sw) | ||
b = x[1:639] | ||
b[is.na(b)] = 0 | ||
Yhat = H * fft(b[1:639]) | ||
yhat = Re(ifft(as.vector(Yhat))) | ||
|
||
plot(x, lwd=4, col="gray", type="l", ylim=c(-0.7, 0.7)) | ||
grid() | ||
legend(150, -0.45, legend=c("Noisy Input X[n]", "Wiener Filtered Yhat[n]", "Ground Truth Y[n]"), col=c("gray", "red", "black"), lty=c(1, 1, 2), lwd=2) | ||
lines(16:(320+15), yhat[1:320], col="red", lwd=2) | ||
lines(1:320, y, lwd=2, lty=3) | ||
|
||
############# | ||
|
Oops, something went wrong.