-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #7 from park1119/master
finished chapter 6
- Loading branch information
Showing
1 changed file
with
169 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
############# | ||
# Chapter 6.2 (Probability Inequality) | ||
|
||
## Compare Chebyshev's and Chernoff's bounds | ||
|
||
# R code to compare the probability bounds | ||
|
||
library(pracma) | ||
|
||
epsilon <- 0.1 | ||
sigma <- 1; | ||
N <- logspace(1,3.9,50) | ||
p_exact <- 1-pnorm(N**(1/2)*epsilon/sigma, 0, 1) | ||
p_cheby <- sigma**2. / (epsilon**2*N) | ||
p_chern <- exp(-epsilon**2*N/(2*sigma**2)) | ||
|
||
plot(log(N), log(p_exact), pch=1, col="orange", lwd=2, xlab="log(N)", ylab="log(Probability)") | ||
points(log(N), log(p_cheby), pch=15, col="green", lwd=2) | ||
lines(log(N), log(p_chern), pch=19, col="blue", lwd=2) | ||
legend("bottomleft", c("Exact","Chebyshev","Chernoff"), fill=c("orange", "green", "blue")) | ||
|
||
############# | ||
# Chapter 6.3 (Law of Large Numbers) | ||
|
||
## Weak law of large numbers | ||
|
||
# R code to illustrate the weak law of large numbers | ||
|
||
library(pracma) | ||
|
||
p <- 0.5 | ||
Nset <- as.integer(round(logspace(2,5,100))) | ||
x <- matrix(rep(0, 1000*length(Nset)), nrow=1000) | ||
for (i in 1:length(Nset)) { | ||
N = Nset[i] | ||
x[,i] <- rbinom(1000, N, p) / N | ||
} | ||
Nset_grid <- repmat(Nset, m=1, n=1000) | ||
|
||
semilogx(Nset_grid, x, col='black', pch=19) | ||
points(Nset, p + 3*(((p*(1-p))/Nset)^(1/2)), col='red', pch=19, lwd=1) | ||
points(Nset, p - 3*(((p*(1-p))/Nset)^(1/2)), col='red', pch=19, lwd=1) | ||
|
||
############# | ||
# Chapter 6.4 (Central Limit Theorem) | ||
|
||
## PDF of the sum of two Gaussians | ||
|
||
# Plot the PDF of the sum of two Gaussians | ||
|
||
library(pracma) | ||
|
||
n <- 10000 | ||
K <- 2 | ||
Z <- rep(0, n) | ||
|
||
for (i in 1:K) { | ||
X <- runif(n, min=1, max=6) | ||
Z <- Z + X | ||
} | ||
hist(Z,breaks=(K-0.5):(6*K+0.5),freq=FALSE) | ||
|
||
# Visualize convergence in distribution | ||
|
||
library(pracma) | ||
|
||
N <- 10 | ||
N <- 50 | ||
x <- linspace(0, N, 1001) | ||
p <- 0.5 | ||
p_b <- dbinom(x, N, p) | ||
p_n <- dnorm(x, N*p, (N*p*(1-p))**(1/2)) | ||
|
||
c_b <- pbinom(x, N, p) | ||
c_n <- pnorm(x, N*p, (N*p*(1-p))**(1/2)) | ||
|
||
plot(x, p_n, lwd=1, col='red') | ||
lines(x, p_b, lwd=2, col='black') | ||
legend("topright", c('Binomial', 'Gaussian'), fill=c('black', 'red')) | ||
|
||
# Poisson to Gaussian: convergence in distribution | ||
|
||
library(pracma) | ||
|
||
N <- 4 | ||
# N = 10 | ||
# N = 50 | ||
|
||
x <- linspace(0,2*N,1001) | ||
lambda <- 1 | ||
p_b <- dpois(x, N*lambda) | ||
p_n <- dnorm(x, N*lambda, sqrt(N*lambda)) | ||
|
||
c_b <- ppois(x, N*lambda); | ||
c_n = pnorm(x, N*lambda, sqrt(N*lambda)); | ||
|
||
plot(x, p_n, col="red") | ||
lines(x, p_b, col="black") | ||
legend("topright", c('Poisson', 'Gaussian'), fill=c('black', 'red')) | ||
|
||
plot(x, c_n, col="red") | ||
lines(x, c_b, col="black") | ||
legend("topright", c('Poisson', 'Gaussian'), fill=c('black', 'red')) | ||
|
||
# Visualize the Central Limit Theorem | ||
|
||
library(pracma) | ||
|
||
N <- 10 | ||
x <- linspace(0,N,1001) | ||
p <- 0.5 | ||
p_b <- dbinom(x, N, p); | ||
p_n <- dnorm(x, N*p, sqrt(N*p*(1-p))); | ||
|
||
c_b <- pbinom(x, N, p); | ||
c_n <- pnorm(x, N*p, sqrt(N*p*(1-p))); | ||
|
||
x2 <- linspace(5-2.5,5+2.5,1001); | ||
q2 <- dnorm(x2,N*p, sqrt(N*p*(1-p))); | ||
|
||
plot(x, p_n, col="red") | ||
points(x, p_b, col="black", pch=19) | ||
|
||
polygon(c(min(x2), x2, max(x2)), c(0, q2, 0), col='lightblue') | ||
|
||
# How moment generating of Gaussian approximates in CLT | ||
|
||
library(pracma) | ||
|
||
p <- 0.5 | ||
s <- linspace(-10,10,1001) | ||
MX <- 1-p+p*exp(s) | ||
N <- 2 | ||
semilogy(s, (1-p+p*exp(s/N))**N, lwd=4, col="lightblue", xlim=c(-10,10), ylim=c(10**-2, 10**5)) | ||
mu <- p | ||
sigma <- sqrt(p*(1-p)/N); | ||
MZ <- exp(mu*s + sigma^2*s**2/2); | ||
lines(s, MZ, lwd=4); | ||
legend("topleft", c('Binomial MGF', 'Gaussian MGF'), fill=c('lightblue', 'black')) | ||
|
||
|
||
# Failure of Central Limit Theorem at tails | ||
|
||
library(pracma) | ||
|
||
x <- linspace(-1,5,1001) | ||
lambda <- 1 | ||
|
||
N <- 1 | ||
f1 <- (N**(1/2)/lambda)*dgamma((x+sqrt(N))/(lambda/sqrt(N)), N, lambda) | ||
semilogy(x, f1, lwd=1, col='lightgray', xlim=c(-1,5), ylim=c(10**-6, 1)) | ||
|
||
N <- 10 | ||
f1 <- (N**(1/2)/lambda)*dgamma((x+sqrt(N))/(lambda/sqrt(N)), N, lambda) | ||
lines(x, f1, lwd=2, col='gray') | ||
|
||
N <- 100 | ||
f1 <- (N**(1/2)/lambda)*dgamma((x+sqrt(N))/(lambda/sqrt(N)), N, lambda) | ||
lines(x, f1, lwd=2, col='darkgray') | ||
|
||
N <- 1000 | ||
f1 <- (N**(1/2)/lambda)*dgamma((x+sqrt(N))/(lambda/sqrt(N)), N, lambda) | ||
lines(x, f1, lwd=2, col='black') | ||
|
||
g <- dnorm(x,0,1) | ||
lines(x, g, lwd=2, pch=1, col='red') | ||
|
||
legend("bottomleft", c('N=1', 'N=10', 'N=100', 'N=1000', 'Gaussian'), fill=c('lightgray', 'gray', 'darkgray', 'black', 'red')) | ||
|