-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Double pendulum
- Loading branch information
Showing
1 changed file
with
93 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Wed Apr 18 06:03:32 2018 | ||
@author: nolte | ||
""" | ||
|
||
import numpy as np | ||
from scipy import integrate | ||
from matplotlib import pyplot as plt | ||
import time | ||
|
||
plt.close('all') | ||
|
||
E = 1. # 1 | ||
|
||
def flow_deriv(x_y_z_w,tspan): | ||
x, y, z, w = x_y_z_w | ||
|
||
A = w**2*np.sin(y-x); | ||
B = -2*np.sin(x); | ||
C = z**2*np.sin(y-x)*np.cos(y-x); | ||
D = np.sin(y)*np.cos(y-x); | ||
EE = 2 - (np.cos(y-x))**2; | ||
|
||
FF = w**2*np.sin(y-x)*np.cos(y-x); | ||
G = -2*np.sin(x)*np.cos(y-x); | ||
H = 2*z**2*np.sin(y-x); | ||
I = 2*np.sin(y); | ||
JJ = (np.cos(y-x))**2 - 2; | ||
|
||
a = z | ||
b = w | ||
c = (A+B+C+D)/EE | ||
d = (FF+G+H+I)/JJ | ||
return[a,b,c,d] | ||
|
||
repnum = 75 | ||
|
||
np.random.seed(1) | ||
for reploop in range(repnum): | ||
|
||
|
||
px1 = 2*(np.random.random((1))-0.499)*np.sqrt(E); | ||
py1 = -px1 + np.sign(np.random.random((1))-0.499)*np.sqrt(2*E - px1**2); | ||
|
||
xp1 = 0.1 | ||
yp1 = -0.2 | ||
|
||
x_y_z_w0 = [xp1, yp1, px1, py1] | ||
|
||
tspan = np.linspace(1,1000,10000) | ||
x_t = integrate.odeint(flow_deriv, x_y_z_w0, tspan) | ||
siztmp = np.shape(x_t) | ||
siz = siztmp[0] | ||
|
||
if reploop % 50 == 0: | ||
plt.figure(2) | ||
lines = plt.plot(x_t[:,0],x_t[:,1]) | ||
plt.setp(lines, linewidth=0.5) | ||
plt.show() | ||
time.sleep(0.1) | ||
#os.system("pause") | ||
|
||
|
||
|
||
y1 = np.mod(x_t[:,0]+np.pi,2*np.pi) - np.pi | ||
y2 = np.mod(x_t[:,1]+np.pi,2*np.pi) - np.pi | ||
y3 = np.mod(x_t[:,2]+np.pi,2*np.pi) - np.pi | ||
y4 = np.mod(x_t[:,3]+np.pi,2*np.pi) - np.pi | ||
|
||
py = np.zeros(shape=(10*repnum,)) | ||
yvar = np.zeros(shape=(10*repnum,)) | ||
cnt = -1 | ||
last = y1[1] | ||
for loop in range(2,siz): | ||
if (last < 0)and(y1[loop] > 0): | ||
cnt = cnt+1 | ||
del1 = -y1[loop-1]/(y1[loop] - y1[loop-1]) | ||
py[cnt] = y4[loop-1] + del1*(y4[loop]-y4[loop-1]) | ||
yvar[cnt] = y2[loop-1] + del1*(y2[loop]-y2[loop-1]) | ||
last = y1[loop] | ||
else: | ||
last = y1[loop] | ||
|
||
|
||
plt.figure(3) | ||
lines = plt.plot(yvar,py,'o',ms=1) | ||
plt.show() | ||
|
||
|
||
plt.savefig('DPen') |